

Mastering Unity 2D Game
Development
Second Edition

Master everything you need to build a 2D game using Unity 5
by developing a complete RPG game framework!

Ashley Godbold
Simon Jackson

 BIRMINGHAM - MUMBAI

Mastering Unity 2D Game Development

Second Edition

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2014

Second edition: October 2016

Production reference: 1071016

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78646-345-6

www.packtpub.com

http://www.packtpub.com

Credits

Authors

Ashley Godbold

Simon Jackson

Copy Editor

Sameen Siddiqui

Reviewer

Claudio Scolastici

Project Coordinator

Ulhas Kambali

Commissioning Editor

Amarabha Banerjee

Proofreader

Safis Editing

Acquisition Editor

Smeet Thakkar

Indexer

Rekha Nair

Content Development Editor

Prashanth G

Graphics

 Kirk D'Penha

Technical Editor

Sushant S Nadkar

Production Coordinator

Aparna Bhagat

About the Authors
Dr. Ashley Godbold is a programmer, game designer, artist, mathematician, and teacher.
She holds a Bachelor of Science in Mathematics, a Master of Science in Mathematics, a
Bachelor of Science in Game Art and Design, and a Doctor of Computer Science in
Emerging Media, where her dissertation research focused on educational video game
design. She works full-time as a game developer and also runs a small indie/passion studio.
She teaches college courses in Unity, 3ds Max, Adobe Flash, game design, and mathematics.

I would like to thank my husband, Kyle, and my daughter, Claire, for supporting me after I
made the crazy decision to write a book and a dissertation at the same time. I would also
like to thank my good friend, Danny Rich, for being the person with whom I initially set
out to learn Unity and for helping me with character art in this book.

I'd also like to thank everyone at Packt Publishing for helping me through this process,
particularly Smeet Thakkar, Prashanth G Rao, and Sushant Nadkar for all of their help
through this process.

Simon Jackson has been a tinkerer, engineer, problem solver, and solution gatherer ever
since his early years. In short, he loves to break things apart, figure out how they work, and
then put them back together; usually better than before.

He started way back when with his first computer, the Commodore Vic20. It was simple,
used a tape deck, and forced you to write programs in Basic or assembly language; those
were fun times. From there, he progressed through the ZX Spectrum +2 and the joyous days
of modern graphics, but still with the 30-minute load times from a trusty tape deck. Games
were his passion even then, which led to many requests for another gaming machine, but
Santa brought him an Amstrad 1640, his first PC. From there, his tinkering and building
exploded, and that machine ended up being a huge monstrosity with so many add-ons and
tweaked fixes. He was Frankenstein, and this PC became his own personal monster crafted
from so many parts. Good times.

This passion led him down many paths, and he learned to help educate others on the tips
and tricks he learned along the way; these skills have equipped him well for the future.

 Today, he would class himself as a game development generalist. He works with many
different frameworks, each time digging down and ripping them apart, and then showing
whoever would listen through his blog, videos, and speaking events how to build awesome
frameworks and titles. This has been throughout many generations of C++, MDX, XNA
(what a breath of fresh air that was), MonoGame, Unity3D, The Sunburn Gaming Engine,
HTML, and a bunch of other proprietary frameworks—he did them all. This gives him a
very balanced view of how to build and manage many different types of multiplatform
titles.

He didn't stop there as he regularly contributed to the MonoGame project, adding new
features and samples, and publishing on NuGet. He also has several of his own open source
projects and actively seeks any new and interesting ones to help with.

By day, he is a lowly lead technical architect working in the healthcare industry, seeking to
improve patients' health and care through better software (a challenge to be sure). By night,
he truly soars! Building, tinkering, and educating while trying to push game titles of his
own. One day they will pay the bills, but until then, he still leads a double life.

I would like to thank my family above all, my wife, Caroline and my four amazing children
(Alexander, Caitlin, Jessica, and Nathan), for putting up with me and giving me the space
to write this title as well as my other extravagances—they truly lift me up and keep me
sane. They are my rock, my shore, my world.

I would also like to thank Jamie Hales of PixelBalloon who generously donated some
content for the Appendix and gave me new ideas and insights to look into.

A big shout out to all the guys who ran and helped me out with the Unity porting events,
which I supported throughout the course of this book, namely Lee Stott, Simon Michael,
Riaz Amhed, Louis Sykes, Ben Beagley, Josh Naylor, Mahmud Chowdhury, and Michael
Cameron. Also, the Unity evangelists who were badgered throughout the events and were
pumped for hidden details: Joe Robins and Andy Touch. Truly a great crowd to get game
developers energized and their titles onto as many platforms as possible. Lots of weekends
lost to writing, but the book was better, for they led to so many different experiences.

Finally, thanks to the reviewers of this title who kept me grounded and on target, although
that didn't help to keep the page count low—thanks for your support guys.

About the Reviewer
Claudio Scolastici is a game designer with a background in Psychology, Cognitive Science
and AI. He is currently a game designer for the video game and VR/AR developer
SpinVector, author of cool games such as From Cheese and Artusi Cooking Time.

He is also a guest tutor at Digital Tutors/Pluralsight and a book author for Packt.

www.PacktPub.com
eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s : / / w w w . p a c k t p u b . c o m / m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Table of Contents
Preface 1

Chapter 1: Overview 7

Getting assets 10
Unity's 2D features 11

2D mode versus 3D mode 11
Working with sprites 13

Sprite Renderer 13
Sprite Editor 14
Sprite sheets 15
Texture atlases 17
Physics 2D 18

Changes to Unity 5 19
Licensing 19
Component access 20
Animator changes 21
Audio mixing 22

Summary 22

Chapter 2: Building Your Project and Character 23

Project overview and structure 24
Project overview 24
Structure 25
Asset naming 27

Creating the project 29
Creating a scene 32
Sprite system 35

Importing sprites 35
Texture Type – Sprite (2D and UI) 36
Sprite Mode – Single/Multiple/Polygon 37
Packing Tag 37
Pixels Per Units 37
Pivot 38
Generate Mip Maps 38
Filter Mode 38
Default settings and per-platform overrides 38

Sprite Editor 39
Sprite slicer 40

[ii]

Automatic 40
Grid By Cell Size and Grid By Cell Count (Manual) 41

View controls 42
Sprite region manipulation 43

Importing our main character 44
GameObjects and components 47

Sprite GameObjects 48
Bringing our hero into the scene 49

Classes 51
MonoDevelop 52
The object-orientated design 54
The game structure 56

The common game object 56
The player object 57

Planning behaviors 58
Behaviors for the common game object 59

Coding with components 60
Accessing components 61
Referencing a component 61
Controlling the hero 62

Going further 65
Summary 65

Chapter 3: Getting Animated 66

Fundamentals of sprite animation 66
Animation clips 67

Animation Dope Sheet 69
The time/recording controls (1) 69
Animation drop-down selection (2) 69
The sample rate (frames per second) (3) 70
Animation properties (4) 70
Timeline (5) 70
Curve view (6) 71

The Animation Controllers 71
The Animator component 72

Animating the main character 73
Adding your first Animation Clip 74
Setting up the Animator and default state 79
Adding the other Animation Clips 83
Planning the animation transitions 84
Connecting the animation states 86
Accessing controllers from a script 93

[iii]

Making her stop animating and face the correct direction 95
Going further 100
Summary 100

Chapter 4: The Town View 101

Backgrounds and layers 101
To slice or not to slice 101
The town background 102
The town buildings and roads 108
The extra scenery 110

Building the scene 112
Adding the town background 112
Sprite sorting layers 113
Sprite Sorting Order 114
Updating the scene sorting layers 115
Building out the scene 118

Working with the camera 121
Comparing Update, FixedUpdate, and LateUpdate 124
Moving our camera with the player 124
The perils of resolution 125
Setting our aspect ratio and camera parameters 126

Transitioning and bounds 128
Towns with borders 128
Journeying onward 134

Going further 137
Summary 137

Chapter 5: Working with Unitys UI System 138

UI Canvas 139
EventSystem 141
Canvas Render Mode 142

Screen Space – Overlay 143
Screen Space – Camera 144
World Space 145

Using multiple Canvases 146
UI Text and Images 146

UI Text 146
UI Image 148

UI Layout and Rect Transform 149
Rect Tool 150
Pivot 151

[iv]

Anchors 151
UI Buttons 153

Transition types 154
Text child 154
On Click () 155

Going further 158
Summary 158

Chapter 6: NPCs and Interactions 159

Considering an RPG 159
Advanced programming techniques 161

Singletons and managers 161
The manager approach – using empty GameObjects 161
The singleton approach – using the C# singleton pattern 163

Communicating between GameObjects 166
Delegates 166

The configurable method pattern 167
The delegation pattern 168
Compound delegates 170

Events 171
Messaging 174
A better way 175

Background tasks and coroutines 179
Enter coroutines 180
IEnumerator 180
Yielding 181
Starting coroutines 182
Closing the gap 183

Serialization and scripting 184
Saving and managing asset data 184
Using the serialized files in the editor 189
Accessing the .asset files in the code 190

Adding NPCs and a conversation system to our game 191
Let the player walk around the NPC 195
Stopping the player from walking through the NPC 198
Getting the NPCs talking 201

The conversation object 202
Saving and serializing the object for later 203
The conversation component 209

Building a basic conversation system 209
The manager 209
Starting a conversation 210

[v]

Preparing the UI 211
Displaying the conversation 218

Connecting the dots 221
Going further 225
Summary 226

Chapter 7: The World Map 227

The larger view 227
Types of map 228

Fixed maps 228
Generated maps 229

In-game generated maps 229
Going procedural 230

Creating our game's map 231
Adding the world map 231
Adding a player prefab to the overworld 233
Adding places of interest 235

Leaving town 240
Creating a NavigationManager script 241
Blocking off paths 244
Updating build settings to include new scenes 246
Changing scenes 247

Returning to town 248
Updating the NavigationManager script 248

Going further 249
Summary 249

Chapter 8: Encountering Enemies and Running Away 250

Event systems 250
Exploring randomness 251

True randomness 252
Planning for random code/generation 252

Basic Artificial Intelligence 254
State machines 255

Defining states 255
Simple singular choice 257
Planning for multiple cases 258
State managers 259

Sensors 261
Setting up your battle scene 261

Building the new scene 261

[vi]

Adding the first enemy 263
Spawning the Dragons 268

Creating the BattleManager 274
Allowing the player to run away 277
Starting the battle 279
Saving the map position 283
Stop immediately re-entering battle 287
Going back to town 287

Going further 290
Summary 291

Chapter 9: Getting Ready to Fight 292

Setting up our battle state manager 292
The battle state manager 292
Getting to the state manager in the code 296
Starting the battle 299
Introductory animation 300

Efficient RPG UI overlays 308
The adventurer's overlay 309
A context-sensitive overlay 310
Modern floating UI approach 311
Balancing the need 312

Bring on the GUI 312
Laying out the HUD 312
Displaying the correct buttons 320

Going further 325
Summary 325

Chapter 10: The Battle Begins 326

Designing an interesting battle system 326
Leveling up 327
Balancing 327

Preparing to attack a single enemy 327
Beefing up the enemy AI 329

The enemy profile/controller 329
Updating the Dragon prefab 332
Setting up the enemy profile in the code 333

Selecting an attack 334
Adding a visual effect to attack selection 336

Selecting a target 339

[vii]

The selection circle prefab 340
Adding selection logic to the EnemyController class 341

Attack! Attack! 344
Using particle effects to represent an attack 345

Creating the materials for the particle effects 345
Adding the particles 346
Displaying the particles upon attack 356

Finishing up the battle 357
Going further 358
Summary 358

Chapter 11: Shopping for Items 359

Why do we shop? 359
The power of an item 360
Building your shop 361
Laying out your inventory 363

Rule of 99' 363
Encumbrance systems 363
Slot-based systems 364
A mini game 365
Real world 366

Creating a shop and inventory 366
Gathering shop assets 366
Building the shop scene 368
Creating inventory items 378
Managing the shop 381
Updating the player inventory definition 384
Stocking the shop 385
Linking up the buttons 386
Turning off the Buy Button 388
Entering the shop 389
Leaving the shop 391
Managing your inventory 392
Adding objects to the player's inventory 396

Going further 398
Summary 398

Chapter 12: Sound and Music 399

Choosing the appropriate sound and music 399
Where to get sound and music for your game 400

[viii]

Free resources 400
Audio listeners and audio sources 401
Adding background music 402

Creating a splash screen 402
Adding the audio source 403
Transitioning to the next scene 403
Keeping the music after the scene transition 406

Adding sound effects 406
Adding a sound to the buy button 408

Muting/unmuting audio 410
Going further 413
Summary 414

Chapter 13: Putting a Bow on It 415

Building in-game menu structures 415
The screens 415

Splash screens 416
Loading screens 416
The main menu 416
Save slots/level selections 417
Settings pages 417
The About screen 417
Privacy policy 417
Pause screens 418
Additional menus (purchasing, achievements, leaderboards, and so on) 418
Social 419

The flow 419
Finishing our splash screen 420
Building our start screen 422
Extending the editor 426

The property drawers 427
Examples property drawers 428

Built-in property drawers 428
Custom property drawers 429

Custom editors 433
The editor window 436
Gizmos 438
Building your editor menus 440

Adding a MenuItem attribute 441
Enabling/disabling a MenuItem attribute 441
Adding shortcut keys to a MenuItem attribute 442
Adding contextual MenuItems 443

Running scripts in the Editor folder 444

[ix]

Alternative approaches 445
The [InitialiseOnLoad] attribute 445
Editor application callbacks 446
Mixing it up 447

Working with settings 449
Using PlayerPrefs 449
Serializing your data 450
Saving data to disk 451
Backing up to the Web 451

Going further 452
Summary 453

Chapter 14: Deployment and Beyond 454

Handling platform differences 454
Preprocessor directives 455

Pushing code from Unity 457
Processing assets 457
Processing the build 458

Building your assets 460
Packaging gotchas 462
Distributing to mobile 464
Social network integration 464
Monetization 465

Paid 465
Paid with trial 465
Ad supported 466
In-app purchases 468
In-game currency 470

Going further 470
Summary 471

Index 472

Preface
The Unity engine has revolutionized the gaming industry, by making it easier than ever for
indie game developers to create quality games on a budget. Hobbyists and students can use
this powerful engine to build 2D and 3D games, to play, distribute, and even sell for free!
Unity 4.3 dramatically reformed the way developers could create 2D games when they
included sprite rendering, 2D physics, and sprite key-frame animation. Unity 4.6 further
shook the gaming world by adding a new and elegant UI system that perfectly
complimented the 2D games developers began creating. Now, Unity 5 has arrived! And this
text will explore all the wonderful features it has to offer for 2D game development.

In this book, you will learn how to build an RPG game framework, learning lots of tips and
tricks along the way. You will start by making a character and a village for the character to
interact with NPCs. Then you will develop an overworld map for the character to explore
that will be loaded with enemies who randomly attack her. After that, you'll cover the
process involved in setting up a turn based battle system along with all of the necessary
steps for creating a functional GUI. Following that, you'll develop a shop and inventory
system and then implement sound and music. By the end of this book, you will be able to
architect, create, deploy, your game as well as have the knowledge to build and customize
the Unity editor.

What this book covers
Chapter 1, Overview. This chapter gives a basic overview of the 2D features provided
within Unity 5. It also provides general guidance for finding free assets to use within 2D
projects. Lastly, it points out key differences between Unity 5 and Unity 4.

Chapter 2, Building your Project and Character. This chapter covers the steps necessary to
start building a project. It describes object oriented programming, how it is used in Unity,
and the basic structure of a class in C# using MonoDevelop. This chapter also describes the
process of importing, editing, and implementing, 2D sprites into the Unity engine, as well
as the programming required to move the sprite around the screen with the player's
interaction.

Chapter 3, Getting Animated. This chapter introduces animation in Unity by utilizing the
various animation components. It describes the process of converting a sprite sheet to an
animation clip and implementing the Animator component. It also describes the process of
setting up the Animator Controller and explains how to implement animation parameters
using scripting.

Preface

[2]

Chapter 4, The Town View. This chapter explains the process of setting up the town in which
the character will walk around. It also explains the process of working with the camera and
how to program the functionality necessary for the character to interact with her
environment.

Chapter 5, Working with Unity's UI System. This chapter gives a general overview of the UI
system implemented in Unity 4.6.

Chapter 6, NPCS and Interactions. This chapter covers the overall structure of interacting
with non-player characters within an RPG. It then describes the process of writing and
implementing the code necessary to allow the player to speak with the NPCs, and
displaying the conversation utilizing the UI system.

Chapter 7, The World Map. This chapter discusses the process of building a map for the
player to navigate and allowing the player character to exit the initial town.

Chapter 8, Encountering Enemies and Running Away. This chapter discusses the process of
creating a battle scene that contains randomly spawning enemies. It then covers the
programming required to have the player character transition in to random battles and
transition back to the map by selecting the option to run away.

Chapter 9, Getting Ready to Fight. This chapter discusses the process of developing a battle
introduction animation and the GUI that will allow the player to interact with the battle.

Chapter 10, The Battle Begins. This chapter further develops the battle system, by
implementing the code that allows the player to select various attacks, incorporating
particle systems to represent attacks, and utilizing an event system.

Chapter 11, Shopping for Items. This chapter discusses the process of creating a shop in
which the player can buy items and an inventory system in which the player can save the
purchased items.

Chapter 12, Sound and Music. This chapter covers the basics of sound integration utilizing
audio listeners and sources, by adding background music and a sound effect when the
player purchases an item.

Chapter 13, Putting a Bow on It. This chapter covers the finishing touches necessary to
create a complete game. This includes packaging the game, implementing a splash screen
and menu system, extending the editor, and adding a system to save the player’s data.

Chapter 14, Deployment and Beyond. This final chapter discusses how to convert the final
game to a playable game.

Preface

[3]

What you need for this book
In order to follow this book, you will need the Unity game engine available at h t t p s : / / u n i

t y 3 d . c o m / g e t - u n i t y / d o w n l o a d.

You will need to download version 5.3 or higher. This text was written using 5.3.4. If for
some reason, you want to get Unity 5.3.4 instead of the most recent version, you can get
archived versions from h t t p s : / / u n i t y 3 d . c o m / g e t - u n i t y / d o w n l o a d / a r c h i v e.

To get the art assets and code discussed within the book, you should download the book's
support files.

Who this book is for
This book is intended for anyone looking to get started in developing 2D games with Unity
5 or anyone already familiar with Unity 2D wishing to expand or supplement their current
Unity knowledge. A basic understanding of programming logic is needed to begin learning
with this book, but intermediate and advanced programming topic are explained
thoroughly so that coders of any level can follow along. Previous programming experience
in C# is not required.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "This is
done by calling DontDestroyOnLoad when you initialize the class."

A block of code is set as follows:

//Set the public property of the singleton
MySingletonManager.Instance.MyTestProperty = "World Hello";

//Run the public method from the singleton
MySingletonManager.Instance.DoSomethingAwesome();

https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive
https://unity3d.com/get-unity/download/archive

Preface

[4]

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "After selecting Create
project, you'll be brought to the Editor Window"

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p : / / w w w . p

a c k t p u b . c o m. If you purchased this book elsewhere, you can visit h t t p : / / w w w . p a c k t p u b . c

o m / s u p p o r t and register to have the files e-mailed directly to you.

mailto:feedback@packtpub.com
https://www.packtpub.com/books/info/packt/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s : / / g i t h u b . c o m / P a c k t P u b l

i s h i n g / M a s t e r i n g - U n i t y - 2 D - G a m e - D e v e l o p m e n t - S e c o n d - E d i t i o n. We also have other
code bundles from our rich catalog of books and videos available at h t t p s : / / g i t h u b . c o m / P

a c k t P u b l i s h i n g /. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from h t t p s : / / w w w . p a c k t p u b . c o m / s i t e s / d e f a u l t / f i l e s / d o w n
l o a d s / M a s t e r i n g U n i t y 2 D G a m e D e v e l o p m e n t S e c o n d E d i t i o n _ C o l o r I m a g e s . p d f .

https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/Mastering-Unity-2D-Game-Development-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringVMwareHorizon7SecondEdition_ColorImages.pdf

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting h t t p : / / w w w . p a c k t p u b . c o m / s u b m i t - e r r a t a,
selecting your book, clicking on the Errata Submission Form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to h t t p s : / / w w w . p a c k t p u b . c o m / b o o k s / c o n t e n

t / s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com
mailto:questions@packtpub.com

1
Overview

Arguably, the most important parts of any project are knowing where to start and what
tools you have in your arsenal before setting out to make your game. In this chapter, we
will give a brief overview of the 2D tools offered in Unity 5 and explore the new features
available to Unity 5.

Since this is the first chapter, let's cover how this book is structured. The main aim of this
book is to build a fully functional, retro-style, Role-Playing Game (RPG) framework and
cover all the main aspects of any good and well-rounded RPG game, including the
following features:

Character development and setup
Building your main game view
A wider world view
Events and encounters
Shopping and inventory systems
Battles

Overview

[8]

We will be visiting places such as the following:

Your home town, as shown in the following screenshot:

The local shop, as shown in the following screenshot:

Overview

[9]

The outside world, as shown in the following screenshot:

Battling dragons in the dark forest, as shown in the following screenshot:

In this chapter, we will walk through the key terms used when working in 2D, as well as
the big changes made in Unity 5 relevant to 2D game creation. We will kick off the next
chapter by building the foundations of our project with some of the best practices in the
industry, including guidance from the Unity team themselves (either direct from team
members or from responses in the forums).

Overview

[10]

The following topics will be covered in this chapter:

Overview of Unity's 2D system
Rundown of new features provided in Unity 5

Getting assets
Since creating games can become quite expensive, we'll use some of the best free assets out
there. There are plenty of resources available to game developers, either as placement assets
for the developer's use, whether they are full assets, or just a framework that you can tweak
to get your desired result. There are a multitude of options.

In the code bundle of this book, you'll get all the assets you need to follow
during the creation of the game. The site where it is available online will
be listed with the instructions.

Some of the best sites to gather assets are described as follows:

Art: Art, especially 2D art, is generally easy to find on a budget, particularly for
the placeholder art, until you buy or create your own for the finished product
(although I've seen many games created with some of these assets). Some good
sites to start with are http://opengameart.org/ and http://open.commonly.cc/.
Audio: Sound that works for your project is a lot trickier to get. Free sites are
okay, but they generally don't have the right sound you will want or you will end
up digging through hundreds or more sounds to get a close match. A good
website to start with is http://soundbible.com/.
General: Some sites just hold a general collection of assets instead of specializing
in specific areas. The best site for this, as everything is almost guaranteed to be
free, is http://search.creativecommons.org/. The Unity Asset Store also offers
a great deal of free assets from art to code. Some of these assets are available from
users, and others are available from the Unity team themselves. Not all of the
assets are free, but you can easily sort your search result by price. You can find
the Unity Asset Store at https://www.assetstore.unity3d.com.

http://opengameart.org/
http://open.commonly.cc/
http://soundbible.com/
http://search.creativecommons.org/
https://www.assetstore.unity3d.com

Overview

[11]

Unity's 2D features
In 2013, with the release of Unity 4.3, Unity made 2D game development significantly
simpler by adding native support for 2D development to the Unity editor environment.
Since then, 2D game development has been on the rise among the indie and hobbyist
developers. This section will give a general overview the various 2D features and terms as
they appear in Unity 5.3.

2D mode versus 3D mode
When creating a new Unity project, you can choose between 3D mode and 2D mode, as
shown in the following screenshot:

The main differences in the two modes are the way assets will be imported into your project
and the default camera view and position. If you select 2D, the default camera will be set to
Orthographic projection, the camera's position will be set to (0, 0, -10), your scene will be in
2D view, and your and images will be imported as sprites rather than textures.

Overview

[12]

You can easily swap between the two modes at any time during development by navigating
to Edit | Project Settings | Editor and changing the Default Behavior Mode option, as
shown in the following screenshot:

Changing the Default Behavior Mode will not affect how your game runs. This setting
really only makes the process of importing new assets and creating new cameras quicker,
because you will not have to manually change the texture type of images and change the
projection of camera.

There are a few other items that are handled differently in 2D mode versus
3D mode, such as lighting, and you can find a list of all the differences at h
t t p : / / d o c s . u n i t y 3 d . c o m / M a n u a l / 2 D A n d 3 D M o d e S e t t i n g s . h t m l.

http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html
http://docs.unity3d.com/Manual/2DAnd3DModeSettings.html

Overview

[13]

Working with sprites
Sprites are 2D images. Sprites can be images that depict a single object (for example, a
character) or an entire scene (for example, a background). Several sprites can also be
combined to create a single object, as shown in the following screenshot:

A character created by combining multiple sprites; example from Unity's platformer sample

When your project is set to 2D mode, any image you import in to your project folder will
automatically be assigned a Sprite (2D and UI) texture type. This means that the image is
assumed to represent a 2D object or scene rather than an image that will applied to a 3D
object.

When a sprite image is dragged from the Assets folder to the Scene view, a 2D Object-
Sprite will be added to your scene. This object will automatically be given the Sprite
Renderer component (refer to the following section), making the sprite visible in your
game; no additional lighting or work is required.

It's important to note that if your sprite has transparencies, you want to
import your sprite texture as a .png formatted image file.

By default, each image is imported as a single sprite; however, by using the Sprite Editor
(refer to the Sprite Editor section), you can change this in various ways.

While your sprite textures can be any dimension, it is highly
recommended that the texture be a perfect square with a power of two
pixel height and width (that is 64 px by 64 px, 128 px by 128 px, and so
on).

Overview

[14]

Sprite Renderer
The Sprite Renderer is the component that allows a 2D object to be displayed as a Sprite on
the screen. Refer to the following screenshot:

The Sprite property selects the image that will be displayed. Any image that is assigned a
Sprite (2D and UI) texture type can be placed in this property. The Color property allows
you to change the vertex color of the rendered image as well as the transparency (through
the alpha).

Flip is a property new to Unity 5.0. This will allow you to flip the sprite in the X or Y planes
without having to use Scale properties in the transform, as was necessary in previous
versions of Unity.

The Sprite Renderer component automatically sets the Material property of the object to
Sprites-Default, which uses the default Shader property as Sprite/Default. The
Sprites/Default shader does not interact with lights in the scene, so lights are not required
to view Sprites with these default settings.

Sprite Editor
The Sprite Editor allows you to manipulate a sprite once it has been imported in to Unity.
The Sprite Editor is only available for graphics with Texture Type set to Sprite (2D and
UI). The following is the screenshot of the Sprite Editor window showing a single sprite:

Overview

[15]

The editor allows some basic manipulations to happen to a sprite, for example:

Changing the sprite's pixilation (mipmap)
Altering the sprite's pivot position
Splicing the texture to identify the sprite region (this is also used for sprite sheets;
refer to the next section)

Sprite sheets
Sprite sheets are a core part of any 2D animation system. Sprite sheets are a single texture
that contains multiple images that represent individual frames of a 2D animation. Unifying
all textures into a single larger texture means greater performance when sending the sprites
to the graphic cards, which is a lot faster than sending lots of smaller files. Refer to the
following screenshot:

Overview

[16]

Sprite Editor window showing multiple sprites in a grid

The traditional way of forming sprite sheets is to put sprites into specific regions on a single
image and then identify the box regions where the individual sprites lie. These regions form
individual frames in the sprite animation. As you can see in the preceding screenshot, nine
sprites are arranged in three rows to form a character's walking animation. The sprites
could have also been arranged in a single row or a single column; it doesn't matter. It's just
how the artist best packs the sprite sheet for the animation. Unity can handle just about any
arrangement you wish to throw at it. Just set the width and height of each texture region
and the Unity Sprite Editor will do the rest. If your individual sprites are non-disjoint
images, all of the same size, Unity can also automatically slice the texture in to the
appropriate regions.

Overview

[17]

Texture atlases
Akin to sprite sheets, texture atlases are a more efficient way of packing textures into a
single texture. It can contain various parts of a character (as follows), or a set of weapons, or
a set of buttons to be used in your UI—anything really.

A selection of separate textures that have been automatically packed; example from Unity's platformer sample

Unity has added a very clever texture cutting and edge detection to make this work very
well and identify specific regions on the texture for each sprite. You can also change the
selection areas if Unity is too optimistic when selecting the texture regions.

The Sprite Packer utility provided by Unity can combine all of your sprite textures in to a
single tightly packed atlas to help improve the performance of your game.

Overview

[18]

Physics 2D
The inclusion of a 2D physics system in Unity 4.3 has made 2D game creation easier than
ever. Before the inclusion, these physics had to be either programmed by the developer or
faked using 3D physics. However, now, with the use of the RidgidBody2D component, the
various 2D colliders, physics materials, effectors, and joints, making a 2D game with
physics can be achieved with a few simple clicks.

Physics plays an important role in many 2D games. This is particularly
true for platformers and certain puzzle games such as Tsum Tsum, Angry
Birds, and Cut the Rope.

The RigidBody2D component can be added to any object that you want to be affected by
the physics engine. For example, you can add the RigidBody 2D component to a sprite you
want affected by gravity. The various 2D colliders, such as the Box Collider 2D and
Polygon Collider 2D, can be added to any object that you want to check collision on. This
can be used to keep objects from passing through one another (refer to the following
screenshot) or can be used to check when two objects touch each other.

Example of 2D colliders used in the Unity platformer to surround walkable elements

You can also apply physics materials to your 2D objects using Physics Material 2D. This
allows greater control over an object's physics interactions, such as friction and bounciness.

Overview

[19]

An effector is essentially a component that applies a type of force to sprites that interact
with the 2D object that has an effector component attached to it. Unity 5 added four effector
components to the Physics 2D library: Area Effector 2D, Point Effector 2D, Platform
Effector 2D, and Surface Effector 2D. When Unity 5.3 released, the Buoyancy Effector 2D
component was added. Constant Force 2D was also included in the Unity 5 update, which
allows you to apply a constant force to a sprite.

Joints are also included in the Unity Physics 2D package. Joints allow various 2D game
objects to join together in distinct ways. Four new joints were added with Unity 5.3. There
are nine joints now included in Unity: Distance Joint 2D, Fixed Joint 2D, Friction Joint 2D,
Hinge Joint 2D, Relative Joint 2D, Slider Joint 2D, Spring Joint 2D, Target Joint 2D, and
Wheel Joint 2D.

Changes to Unity 5
If you have been working with Unity 4.x and are now starting out in Unity 5.x, there are a
few key differences in the way things behave. Here you will find a general overview of the
most relevant changes to 2D game development, other than the ones already discussed
concerning 2D physics.

The following list does not include all of the new features included in
Unity 5 and the Unity 5.3 update. For a complete list, visit h t t p : / / u n i t y 3

d . c o m / u n i t y / w h a t s - n e w / u n i t y - 5 . and h t t p : / / b l o g s . u n i t y 3 d . c o m / 2 1 5

/ 1 2 / 8 / u n i t y - 5 - 3 - a l l - n e w - f e a t u r e s - a n d - m o r e - p l a t f o r m s /.

Licensing
Let's start with the best new feature of Unity 5. In previous versions of Unity, certain
features were only available in the Pro version and were blocked in the free version.
However, in Unity 5, all features are unlocked and can be enjoyed even by developers using
the free version, now named Unity Personal. If a game you create with Unity Personal
makes $100k or more, you will have to pay for the professional version.

http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://unity3d.com/unity/whats-new/unity-5.0
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/
http://blogs.unity3d.com/2015/12/08/unity-5-3-all-new-features-and-more-platforms/

Overview

[20]

Component access
Another big change to Unity 5 is the removal of quick property accessors within code. This
means that a lot of your code written for Unity 4 will need to be rewritten. For example, the
use of .rigidBody2D and .collider2D are no longer permissible. However, if you have
code in your game from an older version of Unity, you will be shown the following
warning:

Selecting I Made a Backup. Go Ahead! will automatically convert all quick property
accessors to code containing the GetComponent function. For example, take the following
code that was previously written as:

object.ridgidBody2D.isKinematic=false;

Now the preceding code would now be written as follows:

object.GetComponent<Rigidbody2D>().isKinematic=false;

Make sure you back up your code before selecting, I Made a Backup. Go
Ahead! The automatic changes may not be what you expect.

Overview

[21]

Animator changes
The most glaring difference when you initially start up the Unity 5 Animator will be the
inclusion of an Entry node. Unity 5 has now added Entry and Exist nodes to StateMachines
(we will discuss state machines in Chapter 8, Encountering Enemies and Running Away).
These nodes allow the transition between states machines. For the most part, you
animations that were running in Unity 4 should run appropriately in Unity 5, but will
include the new Entry node, as shown in the following screenshot:

StateMachine Transitions with Entry and Exit nodes provided by Unity

Overview

[22]

Audio mixing
Previously, if you had a lot of audio sources in your game, dealing with all of them could be
quite a hassle. Unity 5 provide an Audio Mixer asset type that now allows you to adjust all
of your audio levels more efficiently, as show in the following screenshot:

Audio Mixer image provided by Unity

Summary
2D game development has received a new life with the inclusion of 2D support in Unity 4.3.
Since then, many other features have been added, making Unity 5.3 one of the most
versatile and user-friendly gaming engines on the market. Never before has it been easier to
make a 2D game from start to finish on a budget and within a short amount of time.

In this chapter, we covered the objective of the book, the paths to get the assets needed for
the sample project, an overview of the key terms and features related to 2D game
development in Unity, and an overview of the most apparent changes implemented in
Unity 5 related to 2D game development.

Are you sitting comfortably? Well, keep your arms and legs in the ride at all times and
prepare yourself for a high-speed ride!

2
Building Your Project and

Character
It's time to start putting the building blocks that will make up your game into Unity. We
will start with setting up the project and then move on to building the main character.
Setting up the main character is an important first step, as most of your game's core logic
and framework generally centers on the main protagonist and highlights exactly how the
player will interact with the game.

We will be creating two main locations for the character to explore: a 2.5D town in which
she can interact with Non-Playable Characters (NPCs) and a world map in which she will
encounter and battle enemies. To allow our character to interact with and explore these
locations, we must first get our character into our project and give her the ability to move
around the scenes. We must also get our project started the right way by setting up the
project appropriately.

The following topics will be covered in this chapter:

Designing a good project structure
Creating a project and scenes
Importing Sprites
Working with classes and components
Planning and designing behaviors
Setting up user control effectively

Building Your Project and Character

[24]

Project overview and structure
Before you start your project, you should consider how you intend to set it up and architect
your project in the long term. Far too many developers have created problems for
themselves by just diving in rather than designing the outline for the project at the start.

Your game and your assets are not the only things to consider when starting a fresh project.
Sure, you can start importing assets, creating scripts, and getting things running; most
Proof of Concept (POC) projects start this way. Once your project is of a sufficient size and
you start expanding on your initial concept, you'll realize that you have issues with regard
to picking up items and putting them together. Then, you will start devising new ways to
organize your project and eventually find that it's an unmanageable mess; nevertheless, you
will stride on, taking longer and longer to produce new content or add new features.

The best advice one can give is to think about your entire project and how you organize it as
an asset in itself, and accordingly, design it correctly from the beginning. So, what follows
are a few short tricks that you can learn to get started on the right foot.

Architecture is a point that is often missed out in game development and should not be
overlooked. What follows are some of the best practices you can use from day one to design
your game and thereby save a lot of time to fix or change and reorder things later. These
lessons will be used throughout the course of this book, wherever applicable.

Project overview
Before we can start discussing how to structure our game's project, we need to discuss what
features the game we will be creating will actually include.

We will be creating a 2D RPG with the following key attributes:

A 2.5D town
A conversation system
A shop with an inventory system
A character inventory system
A top-down overworld with random encounter battles
A turn-based battle system with character animations

Building Your Project and Character

[25]

Now that we have a general idea of what type of game we will be creating, we can start
structuring our project and implementing some if its features.

Structure
When you start a new Unity project, Unity places the Assets folder within the folder you
designate for the project. Many Unity projects have all their assets in the root Assets folder
or are organized by how the game works. This isn't particularly wrong, but as the project
gets larger, this will eventually cause problems.

The best way in which Unity advises you to organize your project (as also shown in all of
their own examples) is to group objects by their type in the root Assets folder, as shown in
the following screenshot:

This ensures that you will find assets for your entire project that are ready for reuse in every
scene or level according to the type of object. You can then subdivide these appropriately
depending on their use, such as the following:

Separating animation clips from all the controllers that may act on them or on
your models:

Building Your Project and Character

[26]

Grouping audio by its intended use in your game, such as enemies, special
effects, and background music:

Grouping prefabs by layer or their intended use:

Sprites can also be structured in the same way; you can order them according to
how they should be used in your project:

By following the preceding patterns, you are organizing your project effectively in the same
way Unity does and guiding yourself to use a more component-based design. Each scene is
built up of many assets through the lifetime of your project, so organizing your assets this
way will help in the long run.

You can set this level of subgrouping for scripts, scenes, fonts, materials, and so on.
However, as these are generally distinct things that apply to every asset, there is no need to
divide them further.

Building Your Project and Character

[27]

Asset naming
There are no specific patterns for how you should name each of your assets. Generally, this
is left to your preference and, more importantly, how you recognize each part of your game.
There is no need to give something a really long and complicated name in the preceding
structure, only so long that you can find it later.

While it is not required that you follow a naming pattern, some of the more common
patterns include the following:

Prefixing the name with a three letter acronym for its type: scn for a scene, efx
for an effect, and so on
Suffixing an underscore plus the same three letter acronym to the end of an
asset's name
Using a path-like name such as PlayerScene1BounceToWallScript

From experience, these are useful, but my advice is to name things plainly based on what it
is. Using the structure mentioned earlier, you have already organized your assets to
overcome a lot of the issues that the preceding patterns try to solve.

Plan ahead before you even start your game and set a standard that works for you. You
should be able to identify what each asset is and what it does just by looking at the name.
However, remember that each asset will most likely be used many times on many different
game objects, so plan accordingly. Add prefixes and suffixes only when a script or asset is
intended to be limited to a certain type of game object.

Building Your Project and Character

[28]

The Unity examples are another good place to look for inspiration here. See the following
screenshot and decide whether you can tell what these scripts are and what they are used
for just by looking at them:

Unity script examples

Building Your Project and Character

[29]

Creating the project
Before you can start building the game in Unity, you need to start a new project. Select New
at the top of Unity's Home Screen. When creating a 2D game, you want to ensure that you
start the project in 2D mode by selecting the appropriate mode in the Unity's home screen,
as shown in the following screenshot:

Unity's home screen

Remember, if you accidentally set the mode to 3D, you can change this at
any time for your project through Editor Settings, as discussed in the
previous chapter.

Building Your Project and Character

[30]

After selecting Create project, you'll be brought to the Editor Window, as shown in the
following screenshot:

Unity's Editor window

It's important to note that when you create a new project in Unity, you are creating a new
folder that can be accessed through File Explorer (Windows) or the Finder (Mac OS X) with
the following subfolders:

Building Your Project and Character

[31]

Now that we have created our project, let's create the folder structure for the project, as
shown in the following screenshot and discussed previously:

To create a new folder from within Unity, simply select Create | Folder from the project tab
in the bottom left corner of the screen:

Building Your Project and Character

[32]

When creating folders from within Unity, they will be represented within the Assets folder
saved to your computer. Alternatively, if you create the folders from within Window's File
Explorer (or Mac's Finder), the folders will appear within Unity. In the following
screenshot, you will see how the folder structure is mirrored between Unity's
Project window and Window's File Explorer:

Unity's Project windows and Window's File Explorer

As you can see, these folders created from within Unity are showing up in our project folder
saved to our computers.

At this point, it's important to note that we will most likely not use all of
these folders during the course of this book. Nevertheless, it is a good
working practice to get these folders set up for every project just so that
you have a standard template.

Creating a scene
Every level or distinct area you create within Unity will be an individual scene. So, the start
screen will be a scene, the town will be a scene, the map will be a scene, and so on.

We will have the following scenes in our game:

Start Screen
Town
Shop
Overworld
Battle Scene

Building Your Project and Character

[33]

When you start a new project in Unity, you will be given a blank scene that contains only a
camera, as shown in the Hierarchy in the following screenshot:

The Hierarchy displays a list of all the objects within a scene.

The initial scene will be unsaved, as you can see by the word Untitled in the area above the
toolbar preceding the name of the project:

To save the scene, select File | Save Scene. The first location we will design will be the
town, so let's save the scene as Town.unity in the Scenes folder we created, as shown in
the following screenshot:

Building Your Project and Character

[34]

You should now see the scene showing up in your Assets folder and you will see the word
Untitled replaced with Town, as shown in the following screenshot:

Save your scenes regularly by using the shortcut keys Ctrl + S. You will see
an asterisk in the area above the toolbar when you have made changes to
your scene and have not saved, as shown in the following screenshot.

Let's go ahead and create empty scenes for the other five scenes we will have in our game.
Select File | Save Scene as… and save the other five scenes as shown in the following
screenshot:

Now that we have the project folders set up appropriately and our scenes created, let's start
exploring how to work with 2D objects within Unity.

Building Your Project and Character

[35]

Sprite system
It's hard to get excited about a game project until the visual elements are in the scene. We
will discuss how to bring our character in the game shortly, but first let's go over how to
actually use Sprites in Unity. A brief overview of working with Sprites is given in the
previous chapter, but now we will get more technical.

Importing sprites
The simplest way to import a sprite into a scene is to simply drag it from your File Explorer
(Windows) or Finder (Mac OS X) into Unity's Project Window. Once the image file is
brought into the project, clicking on the image will show its various import settings in the
image's Inspector, as shown in the following screenshot:

Image Inspector on Project window

Building Your Project and Character

[36]

Let's take a closer view at the various import settings of an image brought into a 2D project
and discuss each of the properties. Here, I will discuss each setting presented in the
following screenshot; however, I will discuss the Sprite Editor button a later section:

If you make any changes to the following settings, you must hit Apply for
the changes to be saved.

Texture Type – Sprite (2D and UI)
When a Unity project is in 2D Mode, all new images imported into the project are
automatically configured as Sprite (2D and UI) instead of Texture, as they would be if the
project were set to 3D Mode.

The following settings would not appear if the Texture Type were
changed to something other than Sprite (2D and UI).

Building Your Project and Character

[37]

Sprite Mode – Single/Multiple/Polygon
You will leave the Sprite Mode set to Single if your image contains only a single Sprite and
you wish for it to remain on a rectangular plane while being used within your game. If you
are importing a sprite sheet or texture atlas (refer to the previous chapter), you will set the
Sprite Mode to Multiple. If you have a single Sprite that you want to be bound by a
polygon, rather than the standard rectangle, you will select Polygon.

Polygon Sprite Mode will not be discussed further in this text, but its
features follow easily from those that are discussed.

Packing Tag
This is a customizable option that lets you set groups to pack sprites into texture atlases. By
putting a name in the Packing Tag, it tells Unity to group all the objects with the same tag
under a separate texture atlas/sheet together, thereby overriding the default behavior of
placing all the assets on the same atlas. Any assets without a tag will be grouped onto the
default atlas.

Pixels Per Units
This option is just a setting that allows you to scale the image asset at import time, the
default being 100 pixels per unit (or scaled up to 100 percent).

This setting is important because it sets the relative scale of the assets you will import to
your defined game units. Your base game unit guides you on how all the assets will scale
appropriately to each other and, more importantly, to the camera.

You can manage the game scale through this setting or you can handle this scale through
the original texture's sizes; the choice is up to you.

This is particularly helpful with puzzle games. You can use the Pixels Per Unit setting to
make a single block in your puzzle game count as a unit, thus making your coordinate
system easier to deal with.

Building Your Project and Character

[38]

Pivot
The pivot point of a sprite determines from where its position will registered. So, if the
pivot point is set to Center, when a Sprite is positioned to specific coordinate in the scene,
the center of the sprite will be positioned at that point. The pivot point also determines the
point around which the sprite will be rotated. More options for pivot are available in the
Sprite Editor.

Generate Mip Maps
A Mip Map is a smaller version of a texture. Essentially, when Generate Mip Maps is
selected, an object that is further away from the camera will use a smaller version of the
texture. This feature does not change the texture on objects created within the UI.

If you are making a 2D game that is orthographic in view (objects far away from the camera
appear the same size as when they are close to the camera), you may want to deselect this
option. If you want to have objects in your scene that are further away from the camera
appear smaller and will be using a perspective camera, you may want to select this option
for performance optimization.

Filter Mode
Similar to the Generate Mip Maps option, the Filter Mode will come into play when you
are working with a perspective camera and plan on manipulating your objects in 3D space.
Billinear and Trilinear blur the texture as it gets closer to the camera where Point (no
filter) will make it blocky.

Default settings and per-platform overrides
The Max Size of your texture can be set under the default settings. When an image is
initially imported, it is set to 2,048 pixels by 2,048 pixels, as shown in the following
screenshot. However, you can change it to any power of two from 32 to 8,192.

When you are developing for different platforms, you may need to consider the resolution
size of your textures as each platform has different limitations.

Building Your Project and Character

[39]

You will get a warning if your image is not using a power of two size
texture. This is not critical as Unity will still make best efforts to compress
the image:

You can find more information about per-platform overrides at: h t t p : / / d

o c s . u n i t y 3 d . c o m / M a n u a l / c l a s s - T e x t u r e I m p o r t e r . h t m l.

Sprite Editor
The main thing you will likely use the Sprite Editor for is identifying the regions of your
sprite sheets and texture atlases that represent single sprites. It also allows you to adjust the
pivot point of a single sprite (or multiple sprites) and place it in a location not available in
the Pivot Point drop-down menu. It comes with several simple yet powerful features to
control how the individual sprites will be imported, as shown in the following screenshot:

Sprite Editor window

http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html
http://docs.unity3d.com/Manual/class-TextureImporter.html

Building Your Project and Character

[40]

In the editor, you have two sets of functions: the sprite splitter and the view controls. The
options available to you will vary depending on the Sprite Mode.

Sprite slicer
If you have your sprite set to Multiple, the Slice drop-down menu will be enabled. The
slicer has three modes, Automatic, Grid By Cell Size, and Grid By Cell Count, in which it
can carve up your sprite sheet to create individual images for use in your game.

Automatic
Unity has put some very smart logic into its automatic sprite slicing system that can quite
easily identify regions in your sprite sheet where your images are packed. Plus, you have
some advanced options to guide the system to make it fit for your game, as shown in the
following screenshot:

The slicing is based on the alpha regions within the texture, so bear this in mind. The
following are the advanced options provided by Unity:

Pivot: As the name suggests, it allows you to set the default pivot position at
import time for the sprites that it creates by default.
Method: This option has the following options to guide the selection logic to
identify sprites:

Delete existing: Selecting this option will clear all the existing
sprite ranges from the sheet.

This is the default option and Sprite Editor will not select any sprites until
you select one of the sprite identification methods.

Building Your Project and Character

[41]

Smart: This option will try to identify common patterns in the sprites
from the sheet meant for selection. In some cases, it is able to identify
groups that make up a single sprite together.
Safe: This option focuses on tighter regions around each element it
identifies on the sprite sheet, thereby making the edges as close as
possible.

Grid By Cell Size and Grid By Cell Count (Manual)
The grid options are a lot simpler with no complex logic. Grid By Cell Size simply allows
you to define (as the name suggests) a grid over the sprite sheet with defined cell sizes by
setting the height and width options, as shown in the following screenshot:

Unity will then automatically identify sprites based on that grid. The Offset tells the Sprite
Editor where the grids should start relative to the top-left corner and the padding tells the
Sprite Editor how much space is in between the various grids.

Grid By Cell Count works similarly, except it allows you to state how many columns and
rows of Sprites you have rather than how big the Sprites are, as shown in the following
screenshot:

Building Your Project and Character

[42]

View controls
The view controls simply change or affect what you are viewing in Sprite Editor, as shown
in the following screenshot:

The following are the view controls provided by Unity:

Revert: This control simply resets the texture back to the original settings the
editor had when it was opened or when the apply option was used to save.

Note that this is not simply an undo button as it completely resets the
editor back to the beginning.

Apply: As the name suggests, this applies any changes you have made in the
editor. If you close the editor and keep the changes pending, you will be
prompted to apply the changes.

Note that once you apply your changes, these cannot be undone, so when
you click on Apply, be sure that the changes refer to what you actually
want. To undo any of these changes, you would have to restart the sprite
editing process.

Alpha/Color: This control simply changes the view between fully textured sprites
or just the alpha regions. It is useful if you want to see what the automatic
splitting options are using to identify individual sprites.
Zoom Slider: This control is used to zoom in and zoom out. Need I say more?
Pixelation Slider: This slider changes the resolution of the sprite texture. When it
is at the rightmost position, it will be at full resolution (based on the import
settings). The further to the left the slider is moved, the lower the resolution will
be set.

Building Your Project and Character

[43]

Sprite region manipulation
Whether you are working with a single sprite or you have your individual regions
identified on a sprite sheet, you can change the import settings for each sprite, as shown in
the following screenshot:

The Sprite Editor zoomed in on a single sprite from the sprite sheet shown earlier

From here, you can alter the following:

The sprite's name
The region of the sprite's bounding box by the following methods:

Changing the numbers in Position
Changing the numbers in Border
Physically adjusting the bounding box with your mouse using the

Building Your Project and Character

[44]

hook points
Using the Trim button to make the bounding box snap close to the
the edges of the sprite

The pivot point by changing the drop-down option or physical moving it by
dragging the pivot circle

The settings you will change with a single sprite selected will only affect that sprite and not
the rest that are on the sprite sheet, so keep this in mind if the sprite you are editing is part
of an animation.

It is very important to be consistent with pivot point placement with sprite
sheets. If pivot points are not placed on the same relative position, the
animation with look bouncy.

Importing our main character
Now that we have discussed how to import and edit a sprite, let us get our main character
imported into our game.

Select the image titled Protagonist.png from the characters folder in the Art Assets
folder, then drag it to the Characters folder under Assets\Sprites\ in your Unity
project, as shown in the following screenshot:

Folder structure in Project window

Building Your Project and Character

[45]

Next, as our image contains all the frames of the sprite's animation for our main character,
we need to break it up. So, select the image from the project view and change Sprite Mode
in the Inspector to Multiple, as shown in the following screenshot:

Protagonist Import Settings in Inspector

Click the Sprite Editor button to bring up the Sprite Editor window and hit Apply when
prompted. You should see the following:

Building Your Project and Character

[46]

To separate this sprite sheet into individual images, select Slice and change the Type to
Automatic and change the Pivot to Bottom, as shown in the following screenshot:

Properties to Slice a Sprite

Click on Slice to see all of the sprites now surrounded by appropriate bounding boxes, as
shown in the following screenshot:

Building Your Project and Character

[47]

When working with sprite sheets that represent walk cycles, bottom tends
to be the best pivot point position.

Now, click on Apply and close Sprite Editor. Upon returning to the project view, you
should see an arrow symbol next to the image asset we imported; clicking on it will show
you all the individual Sprites that were identified, as shown in the following screenshot:

Individual Sprites that were identified

Now that we have our character in our project and it is properly imported, let's put our hero
into the scene.

GameObjects and components
In Unity, every object in your scene will be a GameObject. A GameObject in itself isn't
much other than a container for holding a list of Components. Components are the
individual properties that make a GameObject unique. When a GameObject is selected,
you can view each of its Components from its Inspector.

The most basic GameObject is an empty GameObject, which will contain no components
other than a Transform. The Transform component is essential to each GameObject, as it
allows it to have a physical location, rotation, and scale in the scene, as shown in the
following screenshot:

Building Your Project and Character

[48]

You can create other types of GameObjects by selecting from a list of possible GameObject,
starting with and empty one and adding individual components, or adding components to
a provided GameObject.

Since we are working in 2D, the majority of our GameObjects will be a Sprite GameObject.

Sprite GameObjects
To create a Sprite GameObject, select Create | 2D Object | Sprite, as shown in the
following screenshot:

The Sprite GameObject has two components, Transform and Sprite Renderer, as shown in
the following screenshot:

Refer to the previous chapter to see more information concerning the Sprite Renderer.

Building Your Project and Character

[49]

Bringing our hero into the scene
Earlier, we imported our hero character's sprite sheet into our project and sliced up the
sprites from that sheet to ensure they are ready to use. So, now let's bring her into the scene.

As with most things in Unity, there are two ways in which we can do this; first, we'll do this
manually, and then we will use a shortcut route. The following steps describe the manual
procedure:

Create an empty Sprite in our game's Hierarchy for our hero by selecting Create |1.
2D Object | Sprite.
Name it Player by changing the name in the inspector:2.

The changes will be reflected in the Hierarchy, as shown the following
screenshot:

Building Your Project and Character

[50]

You will notice that there is no Sprite assigned to the Sprite Renderer. Select the3.
small circle next to the Sprite slot:

Select Protagonist_1 from the list that appears:4.

Building Your Project and Character

[51]

You should now have the same screen as shown in the following screenshot:

Unity's Editor window

A quicker method to create this Sprite is to drag and drop the
Protagonist_1 image from the Project view into the scene and set the
Transform Position to (0,0,0).

So, we have a character in a scene, but it's still not very interesting. A game is only truly a
game if it has interaction. So let's allow our character to move about. But, before we can do
that, we need to discuss some programming caveats.

Classes
Architecting the core of your game from the beginning is an often-skipped process. Many
developers are too eager to build their game and just start placing assets in a scene as they
go. This kind of practice is fine for prototypes (mostly, however, even with prototypes, a
level of architecture is usually required). When building your actual project, however,
without setting up a proper architecture from the beginning, you are heading toward a
world of utter mess.

Building Your Project and Character

[52]

When we say architecture, it doesn't mean that you need to design everything (but it helps).
You just need to ensure that you plan what you are going to build before you build it
instead of thinking about stuff and checking Google for information on how to do it. Even if
you are using some kind of an agile method, you should have a good framework and goal
for each step. This will guide you on what should be done and when, not just designing the
project on the fly.

MonoDevelop
When you create a new script in Unity, you will create a new class. To create a new script,
select Create | C# Script.

When you double-click on the script, MonoDevelop will open. MonoDevelop is the
Integrated Development Environment (IDE) that comes with Unity:

MonoDevelop an IDE

Building Your Project and Character

[53]

This means that all code will be open, edited, and ran from within MonoDevelop. You can
use other editors, such as Microsoft Visual Studio, but we will use MonoDevelop
exclusively in this text.

If double-clicking on a script causes an editor other than MonoDevelop to
open, you can change the default editor back to MonoDevelop by selecting
Edit | Preferences | External Tools and making sure MonoDevelop is set
as the External Script Editor:

Building Your Project and Character

[54]

When a new script is created, its name must also match the class, as shown in the following
screenshot:

The object-orientated design
Unity is a fully object-orientated (OO) system with strict interfaces to ensure that the
engine knows what to expect and when, so why shouldn't your game follow the same
pattern? Unity is also component-based, which is something you should take into account
while designing how your game will be put together.

At the core of any OO design, the focus is on reusability. If a set of attributes is repeatedly
used across multiple objects, then they should be separated into one common class and
shared. In addition to this, you should also reduce the amount of code that is doing the
same job. This means that we can more easily make changes to this base set without having
to re-edit all the classes that might need those attributes. The following diagram shows two
approaches of using a base class to define common attributes over multiple code
implementations:

Building Your Project and Character

[55]

Another facet of OO design is to employ interfaces to govern exactly how a class should
look if you have multiple objects of the same type. For example, if you have an Enemy class
structure that defines how enemies in general should work, then, using that same structure,
you specify all the enemy implementations. Interfaces can also define behaviors or methods
on a class, so you can ensure that all the classes that implement that interface will always
have the same common abilities, such as all the enemies will have patrol, Fight, and run
away methods. This means that if you have an enemy object, it will always have those
methods attached to them when you refer to them in the code.

The following diagram shows how you can plan for multiple inheritances, allowing you to
add a common behavior pattern to each group of entities:

Building Your Project and Character

[56]

Knowing this helps us design our game effectively and ensures that we architect it correctly
from the beginning.

We'll discuss these patterns in more detail when we implement them in the following
sections.

The game structure
To keep in line with the preceding architecture set, we'll design the layout of the class to
support a flexible structure that will be easily extended in the future.

The common game object
As almost every entity in our game will have statistics and some basic behaviors, we start
with a generic object (Entity) to define the attributes that all the entities in our game will
have. As there is only one entity type, we don't need to set up an interface for this object as
all the other game objects will just use this one definition, as shown in the following
diagram:

This shows that we have several common attributes for things such as health and strength.

Building Your Project and Character

[57]

Create a new class within your Scripts folder by selecting Create | C# Script. Name the
script Entity.

Type the following code into your new Entity class:

using UnityEngine;
public class Entity : ScriptableObject {
 public string Name;
 public int Age;
 string Faction;
 public string Occupation;
 public int Level = 1;
 public int Health = 2;
 public int Strength = 1;
 public int Magic = 0;
 public int Defense = 0;
 public int Speed = 1;
 public int Damage = 1;
 public int Armor = 0;
 public int NoOfAttacks = 1;
 public string Weapon;
 public Vector2 Position;
}

An interesting feature of Unity involves its handling of public variables.
Whenever a variable is set to public, its values can be easily accessed and
adjusted from the GameObject's inspector, rather than actually adjusting it
within the script.

The player object
Basing the player's character on the Entity object makes the definition of the player a lot
simpler. So, you only need to focus on what is specific to the player's character itself, that is,
the differences between the player and all the other game entities:

Building Your Project and Character

[58]

So, the player character we see here is the only one who has Inventory, Money, and Skills
since they are specific to our hero's work in our game. Create another class within your
Scripts folder. Name the script Player. In the following code, the player inherits all the
properties from the Entity class:

using UnityEngine;
public class Player : Entity {
 public string[] inventory;
 public string[] skills;
 public int money;
}

Preferably, all the attributes of any class should be of the read-only type
outside of the class itself (unless there is a very good reason for it). This is
to ensure that you don't mistakenly change a class's value without
knowing why. It might sound easier to just keep updating everything, but
at some point, while you are debugging, you will want to know why
things are changing. If any code updates these values, then you will
literally spend hours trying to find why. If you need to change values,
then you need to implement behaviors (see the following sections).

To show you how to build the architecture progressively in this project, we will add more
classes to each section; we'll keep things simple and build the project with a strong
foundation.

We already have our base entity in place from which all the game entities as well as our
player are driven, so let's look at implementing them further.

Planning behaviors
Behaviors are just a fancy way of saying things or interactions that will happen in the game.
Breaking down these actions or reactions in this way helps to componentize how we think
our game will work. Stopping and thinking about this from the very beginning means we
won't get too many surprises later on. (There are always surprises after a good night's
sleep.)

Building Your Project and Character

[59]

For example, behaviors can take the following forms:

Attacking another entity
Taking damage
Collecting the loot, which could be money or items
Teleporting to another land

Behaviors on classes should only affect the class that it is defined on. If you are going to
affect another class's attributes, it should be through another behavior on that class.

Behaviors for the common game object
As we have an existing class for common game objects (Entity), we can start to define
some behaviors that are common to all the characters in our RPG game, namely the
following objects:

TakeDamage: This is an object where a character can be damaged. Keeping this
object as common ensures that the calculation of damages is the same for all.
Attack: This is an object where a character can attack another character; if
successful, it deals with damage or, in rare occurrences, it makes characters hurt
themselves. Again, having one way to calculate this helps in battle games so that
attacks are balanced.

So, if we add these behaviors to our Entity object, we get something that looks like the
following screenshot:

Building Your Project and Character

[60]

The behaviors shown in the preceding screenshot would add the following to the Entity
class code:

public void TakeDamage(int Amount) {
 health=health-Mathf.Clamp((Amount-armor),0,int.MaxValue);
}

public void Attack(Entity Entity){
 Entity.TakeDamage(strength);
}

Make sure the preceding code is within the Entity class braces.

We'll not implement these actual behaviors in the code just yet as we will cover them in
more detail when we visit the battle system. For now, we are just setting the ground work
for what we expect to use in the game.

For now, we won't add any further behaviors to the player; we will simply evolve it as we
require it.

Coding with components
Components in Unity are the building blocks of any game; almost everything you will use
or apply will end up as a Component on a GameObject in a scene. When a GameObject is
selected, you can view each of its Components from its Inspector.

You will find that you need to access these various components with script. Next we will
discuss the various ways on which you can do this.

Building Your Project and Character

[61]

Accessing components
To reference the components of a GameObject from within your code, you need to use the
GetComponent function. The following shows you examples of how this is achieved:

Rigidbody myScriptRigidBody;
void Awake()
{
 var renderer = this.GetComponent<Renderer>();
 var collider = renderer.GetComponent<Collider>();
 myScriptRigidBody = collider.GetComponent<Rigidbody>();
}
void Update()
{
 myScriptRigidBody.angularDrag = 0.2f * Time.deltaTime;
}

This way, the Rigidbody object that we want to affect can simply be discovered once
(when the scripts awakes); then, we can just update the reference each time a value needs to
be changed instead of discovering it every time.

Referencing a component
Now, it has been pointed out (by those who like to test such things) that even the
GetComponent call isn't as fast as it should be because it uses C# generics to determine
what type of component you are asking for (it's a two-step process: first, you determine the
type, and then get the component).

However, there is another overload of the GetComponent function in which, instead of
using generics, you just need to supply the type (therefore removing the need to discover
it). To do this, we will simply use the following code instead of the preceding
GetComponent<>:

myScriptRigidBody =(Rigidbody2D)GetComponent (typeof(Rigidbody2D));

The preceding code is slightly longer and arguably only gives you a marginal increase, but
if you need to use every byte of the processing power, it is worth keeping in mind.

Building Your Project and Character

[62]

Controlling the hero
A sprite that only stands on the screen isn't going to make much of a game, so we'll add a
script to allow the player to move the hero to the left or right. Before we can do that, we
need to add a few more components to the character. More specifically, we need to add the
Rigidbody2D component and the BoxCollider2D component.

The Rigidbody2D component will allow our character to be manipulated by physics. This
will give us the ability to give her a velocity (or speed) value. The BoxCollider2D
component gives us the ability to check to see if she is touching other objects.

Let's add the two components to our character:

Select the player from either the Hierarchy list or by selecting the sprite in your1.
scene.
Add a Rigidbody2D component by navigating to Add Component | Physics 2D2.
| Rigidbody 2D in the player's GameObject inspector.
Set the Gravity Scale parameter to 0 (as we are not using gravity) and check the3.
Freeze Rotation Z checkbox.
Next, add a BoxCollider2D component by navigating to Add Component |4.
Physics2D | Box Collider 2D.
Select Is Trigger. This lets Unity know that we will be using the BoxCollider2D5.
to check if the character is touching object rather than stopping it from passing
through objects.

Building Your Project and Character

[63]

This should give you the following view in the inspector:

If we were making a game that used gravity, the Rigidbody2D
component would allow our character to be affected by gravity. We would
also give our character two BoxCollider2D components. One component
to check to see if the character touched other objects (Is Trigger selected)
and another to keep our character from passing through other objects (Is
Trigger not selected).

Building Your Project and Character

[64]

To finish off this chapter, add a new C# script and save it as
Assets\Scripts\CharacterMovement.cs. Open the script in the editor and replace its
contents with the following script:

using UnityEngine;
using System.Collections;

public class CharacterMovement : MonoBehaviour{
 // RigidBody component instance for the player
 private Rigidbody2D playerRigidBody2D;

 //Variable to track how much movement is needed from input
 private float movePlayerHorizontal;
 private float movePlayerVertical;
 private Vector2 movement;

 // Speed modifier for player movement
 public float speed = 4.0f;

 //Initialize any component references
 void Awake(){
 playerRigidBody2D = (Rigidbody2D)GetComponent(typeof(Rigidbody2D));

 }

 // Update is called once per frame
 void Update () {
 movePlayerHorizontal = Input.GetAxis("Horizontal");
 movePlayerVertical = Input.GetAxis("Vertical");
 movement
 = new Vector2(movePlayerHorizontal,movePlayerVertical);

 playerRigidBody2D.velocity=movement*speed;

 }
}

The preceding script is fairly basic; it simply has some parameters to control the speed and
its movement direction. We will adjust the character's sprite later when we learn to animate
her. The update method checks if the player is controlling the game using the default
horizontal keys (left and right) and vertical keys (up and down) and then applies force to
move the hero accordingly.

Building Your Project and Character

[65]

To finish off, add the script to the player's game object by either dragging it to the object in
the Hierarchy or navigating to Add Component | Scripts | Character Movement.

You should note that this very simple controller code only uses a keyboard
input. We will later discuss how to implement this for touchscreen
devices.

If you run the project now by pressing the play button at the top of the screen, you should
see our hero on the screen, and using arrows on the keyboard, the character will move
around the screen.

Going further
If you are of the adventurous sort, try to expand your project by adding the following:

Add a few more characters from the pack and set up their sprite import settings
correctly.
Play with some of the other assets and tackle automatic and grid-based splicing.

Summary
We have certainly covered a lot in this chapter simply because you were setting up the main
structure of the game and covering the basics of importing sprites. We will use both of these
features extensively throughout the text.

Until now, we have covered the following topics:

The basics of game design and structure
Creating new projects and scenes
An overview of all the main sprite components (Sprite/Sprite Renderer)
Importing new sprites
Carving up individual sprites from Sprite Sheets
Adding sprites to your game
Basic character movement with arrow keys

Now that we have our character in our game, we can make her movement much more
natural by adding animation and adjusting her code accordingly. We will add her
animation in the next chapter.

3
Getting Animated

Unity has a powerful built-in animation system. In this chapter, we will discuss animating
using a sprite sheet to create the walk cycle for our main character.

The following topics will be covered in this chapter:

Overview of animation features
Sprite sheet animation
Animation Controllers
Access animators from scripts

Fundamentals of sprite animation
In this section, we will discuss, in general, the features included in Unity that can be used to
create a sprite sheet animation. There are three main features that will be used to create a
fully animated sprite character: Animation clips, Animation Controllers, and Animator
components.

Getting Animated

[67]

Animation clips
Animation clips are the heart of the animation system within Unity. All animations are
saved with the .anim file extension. The animation Dope Sheet system (as shown in the
following screenshot) is very advanced; in fact, it tracks almost every change in the
Inspector for sprites, allowing you to animate just about everything. You can even control
which sprite from a sprite sheet is used for each frame of the animation:

The preceding screenshot shows a three-frame sprite animation and a modified x position
modifier for the middle image, giving a hopping effect to the sprite as it runs.

Sprites don't have to be picked from the same sprite sheet to be animated.
They can come from individual textures or be picked from any sprite sheet
you have imported.

Note that you are not limited to the whole character animation with the animation system;
you can also construct characters from several sprites and animate them individually, as
shown in Unity's own 2D platform sample, which is available at the UnityAsset Store
(http://bit.ly/UnityPlatformer2D):

http://bit.ly/UnityPlatformer2D

Getting Animated

[68]

Character constructed from multiple Sprites

In the preceding screenshot, you can see all the parts of the hero in the Hierarchy, such as
the body, mustache, feet, and bazooka as separate sprites; then, in the animation Dope
Sheet, the Run animation alters the position of each of these sprites to emulate a fast
walking effect. This feature can be used in a powerful way once you get your head around
what is possible.

Getting Animated

[69]

Animation Dope Sheet
The animation Dope Sheet can be used to make simple or complex animations, as shown in
the following screenshot:

Animation Dope Sheet

Navigating around the Animation editor (as shown in the preceding screenshot), we have
the following sections:

The time/recording controls (1)
The time controls let you play or step through your recorded animation to see how it flows.
This is especially useful when combined with the active play in the Scene and Game views.

The record button determines whether the changes in the Scene or Inspector panes will
affect the Animation properties and will add new ones if a property has not been touched
yet.

There are also the buttons to add new KeyFrames (specific points on the timeline at the
currently selected time) or Animation Events (script launching points based on time).

Animation drop-down selection (2)
This is a simple list of all the clips in the current animation set/controller. It also has the
facility to add more clips directly from this drop-down menu.

Getting Animated

[70]

The sample rate (frames per second) (3)
The sample rate sets the number of frames per second available in the timeline. It controls
the number of key frame points possible between time intervals. It defaults to 60fps.

Be sure to be aware of what frame rate your sprite sheets where made in.
Many 2D animation systems run at 24fps, and you will likely need to
adjust this for your animation to perform as expected.

Animation properties (4)
Animation properties list all the different Inspector properties that are being controlled by
this animation clip. If a property is touched in the editor while the record mode is active, it
will create a new property in the animator or alter the existing property in real time.

While in the record mode, any change in the editor will be captured. This includes any child
GameObject properties that you change. This becomes very useful if your animated objects
comprise multiple sprites in the child GameObjects.

Timeline (5)
The timeline window shows all the key frames being animated over the lifetime of the
animation. Setting the sample rate higher and lower will control how many key
points/frames will be available between time units.

You can also use the following keyboard shortcuts to navigate between the frames on the
timeline:

Press comma (,) to go to the previous frame
Press period (.) to go to the next frame
Press Alt + Comma (,) to go to the previous key frame
Press Alt + Period (.) to go to the next key frame

Getting Animated

[71]

Curve view (6)
The timeline view has an alternate view mode to add finer control and curves between the
key frame animations, as shown in the following screenshot:

Curve view in Animation window

Editing the curves takes a little finesse but makes for a better looking transition than the
default Boolean (on/off) effect.

You can further control the curves by setting the inbound and outbound tangents of the
curve, setting either a smooth (linear), sharp (constant), or free-form curve. Simply play
with these settings until you have the kind of curve you want.

We'll cover curves in Chapter 9, Getting Ready to Fight, where we'll learn a few of the
slightly more complex curves and animations.

The Animation Controllers
Animation Controllers are simply state machines, systems that store states and the
transitions between them, that are used to control when an animation should be played and
what conditions control the transition between each state. Animation Controllers are saved
with the file extension .controller. An animation cannot play without a controller and a
controller can contain many animations.

Getting Animated

[72]

Lets look at the following screenshot:

Animation state machine

In the preceding screenshot, the gray rectangles represent animation states and the orange
rectangle represents the default animation state. The states do not have to be animations,
but instead can be a game state. The arrows represent transitions between animation states.
Entry and Exit nodes were added to the State Machine Transitions in Unity 5 and they tell
the state machine what it should do when it starts and when it should exit. You can have
various layers of animation. We will discuss the use of this system to handle game states,
rather than just animations, and describe state machines in further detail in Chapter 8,
Encountering Enemies and Running Away.

A parameter is essentially a variable that we will be able to access later from our character
controller script. Within our script, we can tell our parameters to take on values, thus
making the animations transition when we want them to.

The Animator component
To use an animation prepared in a controller, you need to apply it to a GameObject in the
scene. This is done through the Animator component, as shown in the following screenshot:

Animator component

Getting Animated

[73]

The only property we actually care about in 2D is the Controller property. In it, you specify
which controller is to be attached to the GameObject.

Other properties only apply to the 3D humanoid models, so we can ignore
them for 2D.

Animating the main character
Right now, our hero can move around the screen, but she is always facing toward the
camera and she isn't animated. Her sprite sheet came with her walk cycle from three angles,
so let's put that into action to liven up her movement.

We will accomplish this movement by creating some Animation clips and linking them up
in an Animation controller. As described earlier, in order to get the animation running, we
will need the following prerequisites:

An Animator component on our GameObject
An Animator Controller to manage our animation that is bound to the animator
At least one Animation clip to play in the controller

When you create a new animation clip for a GameObject, the other items are automatically
created for you.

Before you get started with animation, you want to make sure you can view the Animation
and Animator windows. If you do not already have the two windows open, click Window
| Animation from the menu bar and then Window | Animator.

Getting Animated

[74]

You may want to rearrange your windows at this point. I recommend
docking the Animation and Animator windows next to the Game
window so you can see the Project folder while creating animations, as
shown in the following screenshot:

This is easily done by dragging the tabs for the windows to the desired
point. When it gets near a point in the editor where it can dock, it will do
so automatically.

Adding your first Animation Clip
The animation we will create first will be that of our character walking downward. To
create your first animation clip, select the Player from the Hierarchy (or from the Scene
view) and then open the Animation tab. You should see the following:

Prompt to create Animator and Animation Clip

Getting Animated

[75]

Select Create and then save the animation as PlayerWalkDown.anim within your
Assets/Animation/Clips folder, as shown in the following screenshot:

Animation file save menu

By selecting Create, Unity will automatically create an Animator for your Player and will
automatically assign it within an Animator component on the Player. However, it has saved
the new Animator in the Clips folder, as shown in the following screenshot:

Getting Animated

[76]

Notice that the generated Animator Controller is called
Player.controller. Any Animator that is automatically created in the
way will always be named after the GameObject that was selected when it
was created.

Go ahead and drag and drop that Animator into the Assets/Animation/Controllers
folder so that we maintain the integrity of the folder structure we created.

Within the Animation window, you should now see PlayerWalkDown within the drop-
down menu, as shown in the following screenshot:

Within the Project view, navigate to the Assets/Sprites/Characters folder to find the
character's sprite sheet and click on the arrow on the right of the sprite sheet to view all of
the character's walk cycle sprites. The first three images represent the character's downward
walk cycle:

Character sprite sheet for downward walk cycle

Getting Animated

[77]

Select all three of these images by clicking on the first image, holding down Shift, and then
clicking on the third image. Now drag and drop these three images into the Animation
window's Dope Sheet. You should now see the following:

Currently, this animation is way too fast. Clicking on the play button to play the game will
demonstrate this. We will slow this character's animation by reducing the frame rate to 6
fps, by changing Samples from 60 to 6, as shown in the following screenshot:

You can slow an animation in two ways: by adjusting the frame rate or by
spacing the images further apart along the timeline. To move the images
further apart, simply click and drag them to the frame you wish to place
them.

Remember that 1:00 represents 1 second, not 1 minute.

Getting Animated

[78]

Press Play to play the game. You will now see that the animation is running much more
naturally.

You can view the animation without running the game by pressing the
play button within the Animation Window. However, to see this
animation run, you will need to have both the animation and Scene
windows open, and the window tab configuration we discussed earlier
does not allow that. You can adjust the location of your various windows
so that you can have both the animation and scene window present. I
recommend experimenting with moving the various tabs around to see
where they can be placed.

While the animation has a better speed, it is not complete. Even though only three frames
are given for her downward walk cycle, you actually have to use the center image twice to
make the walk animation loop perfectly. The following figure demonstrates the logic
behind a three-frame walk cycle:

To make her animation complete, you must also have the second frame repeated at the end
of the animation. So, place the Protagonist_1 sprite as the fourth frame in the animation,
as shown in the following screenshot:

Getting Animated

[79]

Your animation should now appear as follows:

Setting up the Animator and default state
Remember, when we created the PlayerWalkDown.anim animation, an Animator
Controller named Playercontroller was automatically made for us. We moved it into
the Assets/Animation/Controllers folder. It was also automatically assigned to an
Animator component in the Player's Inspector, as shown in the following screenshot:

Animator component in Player's Inspector

We are going the leave all of the default settings in the Animator component, but we will
rename the Animator to make it easier to recognize later on. Let's rename our Animator as
PlayerWalking.controller (note that you do not have to type the .controller
extension). You can accomplish this by clicking on it twice slowly or pressing F2 on a
keyboard:

Getting Animated

[80]

Renaming Animator component

You will see that this name has been updated in the Player's Inspector, as shown in the
following screenshot:

Getting Animated

[81]

When you open the Animator window, you should see the following:

Depending on how large your Animator window is, you may also see the
red Exit state. Do not worry about that state at this time, as we will not be
using it. Sometimes, when you have more than one animation controller, it
can be difficult to tell which animator you are working on. Notice that it
tells you that name of the controller you are working with at the bottom
right-hand side of the Animator window.

The PlayerWalkDown.anim animation has already been added to the Animator, and since
it was the first animation we created, it has been designated the default state (as
demonstrated by the fact that the animation is colored orange). When we begin our game,
our character automatically starts walking downward, even when she is standing still.
However, we want her to just face downward until we make her start walking. The reason
she is animating initially is her default state is set to PlayerWalkDown.anim.

Getting Animated

[82]

Let's fix this by creating an empty default state. Right-click anywhere within the Animator
Window and select Create State | Empty, as shown in the following screenshot:

Rename this from New State to PlayerStandDown. Then right-click on it and select Set as
Layer Default State to make this Empty State be the new default state, as shown in the
following screenshot:

Getting Animated

[83]

You should now have an Animator that looks something like the following:

Animator window

Run your game and you will see that the player now no longer automatically animates. In
fact, she no longer animates at all! To get her to animate only when she's walking, we're
going to have to tell the controller how and when her animation needs to run. Before we do
that, however, let's set up the other animations the character will need.

Adding the other Animation Clips
The character's sprite sheet had two other animations within it that we will need to set up to
let our character convincingly walk around the screen: walking to the right and walking
upward.

If you're wondering why we do not have a left walking animation, we will
use the walking to the right frames to animate our character going both
left and right.

Getting Animated

[84]

Navigate back to the Animation window for the player. Now we will select Create New
Clip from the animation selection drop-down menu, as shown in the following screenshot:

Name the new clip PlayerWalkUp.anim and make sure you save it in the correct folder.
Create this animation, as you did the downward walking one, by dragging the three
appropriate images into the Dope Sheet. Change the frame rate to 6, as done previously.
You should see the following:

Dope Sheet in Animator window

Do the same thing for the right walking images. Name this animation
PlayerWalkHorizontal.anim, as shown in the following screenshot:

Planning the animation transitions
Before we begin linking up the animations, let's discuss how we plan the character to move
so that the logic we use will flow naturally when we start working with the animator and
start programming her movement.

Getting Animated

[85]

The character can currently move all around the screen in an up, down, left, right, or even
diagonally. The first decision that needs to be made is which animation should be used
when she is walking diagonally. Do we use the side view animation or the upward and
downward facing animations? I personally like the second option, as demonstrated with the
following figure:

So, using the preceding image and the code we wrote in Chapter 2, Building your Project and
Character look at what is happening to make her move in these ways as well as what needs
to happen, as shown in the following screenshot:

Character transition

Getting Animated

[86]

The important facts to garner from the diagram are as follows:

Only when movePlayerVertical is equal to 0, will the
PlayerWalkHorizontal play
If movePlayerHorizontal is less than 0, the PlayerWalkHorizontal
animation must be flipped along the x-axis
If movePlayerVertical is greater than 0, PlayerWalkUp will play
If movePlayerVertical is less than 0, PlayerWalkDown will play

Also, when the character stops moving, she will need to stand still, with legs together facing
the same direction she was moving previously. So, now that we have a general idea of how
we want her to behave based on the code, we can start working on setting up the animation.

Connecting the animation states
At the moment, our two states are not connected. So when we run the project, the hero is
always standing still and facing downward; let's change that.

To tell the controller to move between the two states, we need the following prerequisites:

A transition link between the two states
A parameter or event to activate the transition
Something to change the value of that parameter, usually in a script

Since we last viewed our Animator, we added two new walking animations. Return to your
Animator window and adjust the position of your animations so that they look something
like the following:

Getting Animated

[87]

To allow our character to move between the animations, we need to set up Transitions
between animations. She will be able to walk downward, upward, or horizontally,
regardless of what her last animation was. So, this means that we want to transition from
Any State to these three animations.

So, first, we create the transition between the Any State and the downward walking state
by right-clicking on Any State and selecting Make Transition. This will change the mouse
cursor to an arrow. Then, click on the state we want to transition to, which in this case is the
PlayerWalkDown state. Do this from Any State to PlayerWalkUp and Any State to
PlayerWalkHorizontal as well. When you are done, you should have something that looks
like the following:

State machine for character transition

Getting Animated

[88]

Setting up the transitions in this way tells the Animator that the character can be standing in
the default state, and can go to any of the three animations and then from those animations
can transition to any other animation.

Now that we have told the Animator what states can transition to these animations, we
need to tell it when these transitions will occur. We will do this by setting up Parameters
and Transition Conditions.

Clicking on the transition between Any State and PlayerWalkDown shows you the
properties of that transition in the Inspector, as shown in the following screenshot:

PlayerWalkDown transition properties

Getting Animated

[89]

Clicking on the arrow next to Settings will show further information, as shown in the
following screenshot:

More PlayerWalkDown transition properties

As shown in the Inspector pane, by default, the new transitions are controlled by a single
parameter called Exit Time, which simply means that when the first animation ends, it will
transition to the second. We don't want that here as we want a specific event to control
when the PlayerWalkDown animation is activated.

Change the Settings so that they appear as follows:

Changed settings for PlayerWalkDown

Getting Animated

[90]

Change the settings for the transition between Any State and PlayerWalkUp and the
transition between Any State and PlayerWalkHorizontal in the same way.

When you deselect Exit Time, you will see the following warning stating that a transition
needs at least one condition:

Deselect Exit Time warning

We will give it a condition by creating a transition parameter. To add a new parameter,
select the Parameters tab, click on the + symbol in the parameter section, and then select Int,
as shown in the following screenshot:

Name this parameter yMove, as shown in the following screenshot:

Getting Animated

[91]

We will use this yMove parameter to tell the animator when to transition to the
PlayerWalkDown and PlayerWalkUp animations, as shown in the following figure:

Select the transition between Any State and PlayerWalkDown. Select the + symbol in the
Conditions section. Since yMove is our only parameter, it will automatically be placed as
the condition parameter. Select Less from the drop-down menu, as shown in the following
screenshot:

Selecting Less in Condition parameter

It is now stating that whenever the yMove parameter is less than 0, the Player will run her
PlayerWalkDown animation.

We will do the same thing for the transition between Any State and PlayerWalkUp, but we
will leave Greater in the drop-down menu, as shown in the following screenshot:

Selecting Greater in Condition parameter

Getting Animated

[92]

Now we can set up a parameter for the transition between Any State and
PlayerWalkHorizontal. For this, we will create a Boolean parameter by selecting Bool from
the new parameter menu and naming it xMove, as shown in the following screenshot:

We will use this xMove parameter to tell the animator when to transition to the
PlayerWalkHorizontal animation, as shown in the following figure:

Now select the transition between Any State and PlayerWalkHorizontal. Change the
Condition to xMove to true, as shown in the following screenshot:

Selecting true in condition parameter

If you run the game at this point, the character still doesn't walk when she moves. We've
told the Animator when the transitions need to occur, but we haven't actually done
anything to make these parameter values change. For this, we need to update our
CharacterMovement script.

Getting Animated

[93]

Accessing controllers from a script
Now that we have an animator attached to our Player GameObject, we can adjust its
parameters using scripts. To do so, we are going to update our CharacterMovement.cs
script with the following two things:

Create a variable for the Animator so that we can reference it in the script.1.
Use GetComponent to find the Animator component attached to the Player.2.

Let's first create a variable for the Animator. Add the following code to your variable
declarations:

// Animator component for the player
private Animator playerAnim;

Now let's reference the animator component and assign it to the new variable playerAnim.
Add the following code to your Awake() function:

playerAnim=(Animator)GetComponent(typeof(Animator));

Now we can reference the player's animator within our script.

We also need to be able to access the player's sprite renderer from within the script. The
SpriteRender now has the ability to easily flip a sprite in the x or y direction, and we will
use this property to make the character face left when walking left. We will access the sprite
rendered in the same way we accessed the animator, that is, by declaring a variable and
then referencing it.

Let's first create a variable for the sprite renderer. Add the following code to your variable
declarations:

//Sprite renderer for the player
private SpriteRenderer playerSpriteImage;

Now let's reference the sprite renderer component and assign it to the new
playerSpriteImage variable. Add the following code to your Awake() function:

playerSpriteImage =(SpriteRenderer)GetComponent(typeof(SpriteRenderer));

Now we can reference the player's animator within our script.

Getting Animated

[94]

Recall the values the parameters need to hold for the transitions to occur, as shown in the
following screenshot:

Parameter values for state transition

And recall the conditions that will make the parameters change, as shown in the following
figure:

Getting Animated

[95]

To reflect these conditions in the code, add the following lines of code to your Update()
function:

if(movePlayerVertical!=0){
 playerAnim.SetBool("xMove",false);
 playerSpriteImage.flipX=false;

 if(movePlayerVertical>0){
 playerAnim.SetInteger("yMove",1);

 }else if(movePlayerVertical<0){
 playerAnim.SetInteger("yMove",-1);

 }
}else {
 playerAnim.SetInteger("yMove",0);

 if(movePlayerHorizontal>0){
 playerAnim.SetBool("xMove",true);
 playerSpriteImage.flipX=false;
 }else if(movePlayerHorizontal<0){
 playerAnim.SetBool("xMove",true);
 playerSpriteImage.flipX=true;

 }else{
 playerAnim.SetBool("xMove",false);
 }
}

Your character should now walk around the screen in all the appropriate directions.
However, she won't stop walking when she stops moving! We're going to have to create a
few more animations and another transition parameter to make this work appropriately.

Making her stop animating and face the correct
direction
We are almost done with our character's animation. We only need to do a little more so that
she will stop animating when she stops moving. To accomplish this, we will first make
three idle animations, one for each of her directions. The easiest way to do this is to
duplicate her walking animations and then edit them appropriately.

Getting Animated

[96]

Select the PlayerWalkDown.anim animation from the Project view and type Ctrl + D to
duplicate the animation. Rename the new animation as PlayerIdleDown.anim, as shown
in the following screenshot:

Drag and drop the new PlayerIdleDown animation to the Player's Animator, as shown in
the following screenshot:

PlayerIdleDown animation

Getting Animated

[97]

Open the Animation window and select the new PlayerIdleDown animation from the
drop-down menu. The animation will only show up in this drop-down menu if you have
already added it to the animator, as shown in the following screenshot:

Delete the first, third, and fourth images and then drag the remaining image so that it is in
the 0:0 position. You should now have an animation with only a single image, the image in
which the character is standing still and facing downward, as shown in the following
screenshot:

Repeat this process to create PlayerIdleUp and PlayerIdleHorizontal animations. The
following screenshot shows PlayerIdleUp:

Getting Animated

[98]

The following screenshot shows PlayerIdleHorizontal:

Now we need to set up our transitions in the Animator. Set up transitions from your
walking animations to idle animations, as shown in the following screenshot:

Change the settings on each of these transitions to the following:

Getting Animated

[99]

Now we will use a Boolean parameter to transition to these idle animations. Create a Bool
parameter called moving, as shown in the following screenshot:

Now, set the conditions of each of the new transitions so that they run when moving is
false, as shown in the following screenshot:

The only thing we have to do now is adjust the code to tell moving to change from true to
false. This is actually simpler than the preceding animation code and can be accomplished
by adding the following code to the Update() function:

if(movePlayerVertical==0 && movePlayerHorizontal==0){
 playerAnim.SetBool("moving",false);
}else{
 playerAnim.SetBool("moving",true);
}

Add the preceding code to the Update() function before the if statement that triggered
the animations and after the statement that assigns the player's velocity.

Now your character should be able to walk around and stand around while facing the
correct direction!

Getting Animated

[100]

Going further
If you are of an adventurous sort, try expanding your project to add the following features:

Instead of quickly changing direction, have her slowly transition and turn.
Expand the animation and curves for the hero. Try playing with some of the
other options that were described in the overview.

Summary
The Animation system provides so many features that nearly any animation you can
envision can be created with it. I've not covered everything as that would deserve another
book entirely, so feel free to experiment further. The state machine system isn't just for
animation either, and we will return to this later on.

We covered an overview of all the main sprite animation components (Animator,
Controller, Clips, Keyframes, and Curves), importing new sprites, animating sprites, and
controlling states.

In the next chapter, we will build an environment for our character to walk around and
allow our camera to follow her.

4
The Town View

With our main character in hand, let's give her a home and a place to walk around. In this
chapter, we will cover the basics of creating immersive areas where players can walk
around and interact, as well as some of the techniques used to manage those areas.

The following topics will be covered in this chapter:

Working with environments
Looking at sprite layers
Creating a script to move the camera with the player
Handling multiple resolutions

Backgrounds and layers
Now that we have our hero in play, it would be nice to give her a place to live and walk
around, so let's set up the home town and decorate it.

First, we are going to need some more assets. So, from the asset pack you downloaded
earlier, grab the following assets from the Environments pack and place them in the
Assets\Sprites\Environment folder:

background.png

skyline.png

buildingsAndRoads.png

townObjects.png

The Town View

[102]

To slice or not to slice
As we progress through this book, you will notice that some assets are single textures,
whereas others contain multiple images, and you may wonder which method is best to
create your assets and why it is best.

The answer (as it is in a lot of these situations) depends on the needs of your title.

It is always better to pack many of the same types of images on to a single asset/atlas and
then use the Sprite Editor to define the regions on that texture for each sprite, as long as all
the Sprites on that sheet are going to get used in the same scene. The reason for this is when
Unity tries to draw the Sprite to the screen, it needs to send the images to draw to the
graphics card; if there are many images to send, this can take some time. If, however, it is
just one image, it is a lot simpler and more performant with only one file to send.

There needs to be a balance; too large an image and the upload to the graphics card can take
up too many resources; too many individual images and you have the same problem.

The basic rules of thumb are as follows:

If the background is a full-screen background or a large image, then keep it
separate.
If you have many images and all are for the same scene, then put them into a
single sprite sheet/atlas.
If you have many images but all are for different scenes, then group them as best
you can; common items on one sheet and scene-specific items on different sheets.
You'll have several sprite sheets to use.

You basically want to keep as much stuff together as makes sense and not send unnecessary
images that won't get used to the graphics card. Find your balance.

The town background
First, let's add a background for the town using the
Assets\Sprites\Environment\background.png texture, as shown in the following
screenshot:

The Town View

[103]

With the background asset, we don't need to do anything to the import settings other than
ensure it has been imported as a Sprite (2D and UI) (in case your project is in 3D mode), as
shown in the following screenshot:

Background Import settings menu

The Town View

[104]

There are two other Sprites that will be incorporated into the background and they are in
the Assets\Sprites\Environment\skyline.png image file. The skyline.png image
contains two rows of white skyscraper silhouettes. The following screenshot shows the
image with its transparencies:

To have these Sprites display appropriately, we will have to manually slice the image into
two Sprites using the Sprite Editor. We start editing this sprite sheet in the same way we
edited the sprite sheet of the character in Chapter 2, Building Your Project and Character.
Change the Sprite Mode to Multiple and load up the Sprite Editor using the Sprite Editor
button, as shown in the following screenshot:

Loading the Sprite Editor

The Town View

[105]

Hit Apply, when prompted:

If you try to use the automatic slicing technique that we used for the character, each of the
islands of buildings will be selected as separate Sprites. We do not want this. We want all the
buildings in the top row to be a single Sprite and all the buildings in the bottom row to be a
second Sprite. We will begin slicing this by using the Grid By Cell Count slice Type.
Change the Column & Row setting to 1 and 2 as shown in the following screenshot, and
then hit Slice:

The Town View

[106]

You should now see the following:

Second Sprite Sheet

This is almost what we want, except there is too much space at the bottom of the top sprite.
When you select the top sprite, you will be able to adjust the Sprite's bounding box by
dragging the edges to their desired location. Drag the bottom edge so that it at the very
bottom of the buildings as shown in the following screenshot:

The Town View

[107]

If you are having trouble seeing the buildings, you can select the Alpha/Color button at the
top of the Sprite Editor, as shown in the following screenshot:

The Town View

[108]

Doing so will make the opaque regions stand out from the transparent regions much more
drastically, as shown in the following screenshot:

Once you have both rows of buildings boxed in, select Apply at the top of the Sprite Editor
and then close the Sprite Editor.

Don't worry if you don't perfectly box in the two skylines. A little room on
the top or bottom won't be the end of the world.

The town buildings and roads
Next we will add the town's buildings and roads from the
Assets\Sprites\Environment\buildingsAndRoads.png file, as shown in the
following screenshot:

The Town View

[109]

These images can be separated quite well with the automatic slice setting. Follow the steps
provided in Chapter 2, Building Your Project and Character, to automatically slice the image.
When you have finished, you should have four images, as shown in the following
screenshot:

The Town View

[110]

The extra scenery
Now let's add some extra assets to the scene. If we look at the image containing all of the
scene objects (Assets\Sprites\Environment\townObjects), we will see the following:

As with the other images, change its Sprite Mode to Multiple and run the Sprite Editor.
Now perform Slice | Automatic on it. You should see the following:

Notice that one of the sprites, the mailbox, does not get detected very well; altering the
automatic split settings in this case doesn't help, so we need to do some manual
manipulation. Click on the two bounding regions around the scattered mail and delete

The Town View

[111]

them by pressing Delete with the two regions selected, the two regions that are highlighted
in the following screenshot for clarification:

Manually change the size of the region that is around the mailbox so that it also includes the
scattered mail, as shown in the following screenshot:

The Town View

[112]

This gives us some nice additional assets to scatter around our town and give it a more
interesting look, as shown in the following screenshot:

Building the scene
Now that we have some assets to build with, we can start building our first town, by
placing images within the scene.

Adding the town background
Returning to the scene view, you should see the following:

The Town View

[113]

If, however, we add our town background texture to the scene by dragging it to either the
project Hierarchy or the scene view, you will end up with the following:

Our player has vanished! The reason for this is simple: Unity's sprite system has an ordering
system that comes in two parts.

Sprite sorting layers
Sorting Layers (Edit | Project Settings | Tags and Layers) are a collection of Sprites, which
are bulked together to form a single group. Layers can be configured to be drawn in a
specific order on the screen, as shown in the following screenshot:

The Town View

[114]

Sprite Sorting Order
Sprites within an individual layer can be sorted, allowing you to control the draw order of
sprites within that layer. The sprite Inspector is used for this purpose, as shown in the
following screenshot:

The Town View

[115]

Sprite's Sorting Layers should not be confused with Unity's rendering
layers. Layers are a separate functionality used to control whether groups
of GameObjects are drawn or managed together, whereas Sorting Layers
control the draw order of Sprites in a scene.

The reason our player is no longer visible is she is behind the background. As the two
sprites are in the same layer and have the same sort order, they are simply drawn in the
order that they are in the project Hierarchy.

Updating the scene sorting layers
To resolve the update of the scene's sorting layers, let's organize our Sprite rendering by
adding some Sprite sorting layers. Open up the Tags and Layers Inspector pane, as shown
in the following screenshot (by navigating to Edit | Project Settings | Tags and Layers) and
expand the Sorting Layers menu:

You can add new sorting layers by selecting the plus sign. Add the following Sorting
Layers:

Background
Middleground
Foreground

These layers need to be listed in the ordered they are bulleted. Images in the sorting layer
on the top of the list will appear to be the furthest back and images in the sorting layer on
the bottom of the list will appear to be the closest. You should see the following:

The Town View

[116]

You can reorder the layers underneath the default anytime by selecting a
row and dragging it up and down the sprite's Sorting Layers list.

With the layers set up, we can now configure our GameObjects accordingly. Select the
background to view its Inspector. In the Sprite Renderer component, Background will now
be available in the drop-down menu for Sorting Layer, as shown in the following
screenshot:

The Town View

[117]

Now, set the Sorting Layer on our background Sprite to the Background layer, as shown in
the following screenshot:

Now, select the player GameObject and set its Sorting Layer to Middleground. You should
now see the player in front of the background, as follows:

The Town View

[118]

Building out the scene
Before we add more objects to the scene, let's add a few more background images to expand
the size of the scene. First, set the background's Transform position to (0,0,0). Now,
duplicate the background twice by selecting the image and pressing Ctrl + D two times.
Using the move controls (or by adjusting the transform x position) move background (1)
to the right of background and background (2) to the left of background. Make sure
you do not see spaces between the background images. You should now have the
following:

It can be rather cumbersome to have a bunch of objects in your hierarchy. Also, sometimes
you want objects to be grouped together so that you can move them as a single object. You
can create empty objects in your scene and use them in a similar fashion as folders to group
objects together.

From the Create drop-down menu, select Create Empty, as shown in the following
screenshot:

Rename the new GameObject Backgrounds and set its Transform position to (0,0,0). Now,
select the three background images and drag them until you are hovering over the

The Town View

[119]

Backgrounds GameObject in the Hierarchy. This will make the background images children
of the Backgrounds GameObject. Now, you can move all of the background images at once.
You can also minimize the arrow next to Backgrounds to declutter your Hierarchy, as
shown in the following screenshot:

Now add the sidewalk and road sprites to the scene. When you do so, you will notice they
appear behind the background. Change their GameObject names to sidewalk and road,
respectively. For the road, change its Sorting Layer to Background and its Order in Layer
to 1, as shown in the following screenshot:

The Town View

[120]

For the sidewalk, change its Sorting Layer to Background and its Order in Layer to 2, as
shown in the following screenshot:

Duplicate each of them once. Create an empty GameObject named Roads and an empty
GameObject named Sidewalks to contain the groups. Make sure you set each of these
empty GameObjects' Transform position to (0,0,0) before making the Sprites children of the
empty GameObjects. Move the sidewalks and roads into position so that your scene looks
like the following:

Right now our character is floating in the air and can walk places other than the road and
sidewalk, but we will fix that shortly.

The Town View

[121]

Working with the camera
If you try and move the player left and right at the moment, our hero happily bobs along.
However, you will quickly notice that we run into a problem: the hero soon disappears
from the edge of the screen. To solve this, we need to make the camera follow the hero.

When creating new scripts to implement something, remember that just
about every game that has been made with Unity has most likely
implemented either the same thing or something similar. So, in most cases,
we will have something to work from. Don't just start a script from scratch
(unless it is a very small one to solve a tiny issue) if you can help it.

Once you become more experienced, it is better to just use these scripts as
a reference and try to create your own and improve on them, unless they
are from a maintained library.

Create a new script called FollowCamera in the Assets\Scripts folder, remove the
Start and Update functions, and then add the following variable declarations:

using UnityEngine;
using System.Collections;

public class FollowCamera : MonoBehaviour {

 // Distance between player and camera in horizontal direction
 public float xOffset = 0f;
 // Distance between player and camera in vertical direction
 public float yOffset = 0f;
 // Reference to the player's transform.
 public Transform player;
}

The xOffset and yOffset variables are provided so that we can make the player not
perfectly centered with the camera.

The Town View

[122]

Before we go further, we will attach the FollowCamera.cs script to the Main Camera.
Select the Main Camera from the Hierarchy and drag and drop the FollowCamera.cs
script into the Inspector of the Main Camera below the Add Component button. The
Inspector should now look like the following:

Because we initialized all of the variables as public, they can all be adjusted from within
the Inspector without having to open the FollowCamera.cs script by simply changing the
numbers in the slots next to the variables.

The Town View

[123]

Notice that the player variable was declared as a public Transform, and there is a slot
next to Player that says None (Transform). This means that we can drag and drop any
transform into the Player slot. However, we don't want to put just any Transform in the
slot, we want our player character's GameObject to appear in that slot. Because the
GameObject Player has a Transform component attached to it, we can place it in this spot.

Drag and drop the Player GameObject from the Hierarchy into this slot. You should now
see the following:

Rather than dragging and dropping the Player into the Player slot, you
could have also included the following code in an awake function:

void Awake(){
// check the player reference.
player = GameObject.Find("Player").transform;
 if (player == null){
 Debug.LogError("Player object not found");
 }
}

It is really a matter of preference. I personally prefer the drag and drop
method as I feel that functionality is a big benefit of Unity's interface.

To finish our script, we need to write code that will make the camera follow the player.
Before we can do that, let's discuss the differences between the Update(), FixedUpdate(),
and LateUpdate() functions.

The Town View

[124]

Comparing Update, FixedUpdate, and LateUpdate
There is usually a lot of debate about which update method should be used within a Unity
game. To put it simply, the FixedUpdate method is called on a regular basis throughout
the lifetime of the game and is generally used for physics and time-sensitive code. The
Update method, however, is only called after the end of each frame that is drawn to the
screen, as the time taken to draw the screen can vary (due to the number of objects to be
drawn and so on). So, the Update call ends up being fairly irregular. LateUpdate is the last
of the update functions to be called. It is called after all other update functions have been
called.

General rules of thumb are as follows:

Update(): This is used for most things that you want to have continually
checked or run.
FixedUpdate(): This is the best update function to be used with physics.
LateUpdate(): This is best for camera movement or other items you want to
update after everything else has been updated.

While the preceding are general rules of thumb, they are not set in stone, and it really
depends on the game and what you are trying to accomplish.

Moving our camera with the player
We want the camera to follow the player left and right, but not up and down. As stated
earlier, generally, the best update function to use with a camera is the LateUpdate, so we
will use the following code to make the camera follow the player:

void LateUpdate() {
 this.transform.position = new Vector3(player.transform.position.x +
 xOffset, this.transform.position.y + yOffset, -10);
}

The preceding code sets the camera's x position with that of the player plus some padding.
It also fixes the camera's y and z positions.

The Town View

[125]

The perils of resolution
When dealing with cameras, there is always one thing that will trip us up as soon as we try
to build for another platform-resolution.

By default, the Unity player in the editor runs in the Free Aspect mode, as shown in the
following screenshot:

The Aspect mode (from the Aspect drop-down) can be changed to represent the resolutions
supported by each platform you can target.

You can also make your own resolutions by clicking the plus sign at the
bottom of the drop-down menu and providing your own values.

To change the build target, go into your project's Build Settings by navigating to File |
Build Settings or by pressing Ctrl + Shift + B, select a platform, and click on the Switch
Platform button, as shown in the following screenshot:

The Town View

[126]

When you change the Aspect drop-down menu to view in one of these resolutions, you will
notice how the aspect ratio for what is drawn to the screen changes by either stretching or
compressing the visible area. If you run the editor player in full screen by clicking on the
Maximize on Play button and then clicking on the play icon, you will see this change more
clearly. Alternatively, you can run your project on a target device to see the proper
perspective output.

The reason I bring this up here is that if you used fixed bounds settings for your camera or
GameObjects, then these values may not work for every resolution, thereby putting your
settings out of range or (in most cases) too undersized.

Setting our aspect ratio and camera parameters
For now, we will leave our target build as PC, Mac, & Linux Standalone. Change the aspect
ratio to 4:3 in the Game view. Also, change the size variable to 5, as shown in the following
screenshot:

The Town View

[127]

You should now see the following in the Game view:

The Town View

[128]

Transitioning and bounds
Our camera follows our player, but our hero can still walk off the screen and keep going
forever, so let's stop that from happening.

Towns with borders
As you saw in the preceding section, you can use Unity's camera logic to figure out where
things are on the screen. You can also do more complex ray testing to check where things
are, but I find these are overly complex unless you depend on that level of interaction.

The simpler answer is just to use the native Box2D physics system to keep things in the
scene. This might seem like overkill, but the 2D physics system is very fast and fluid, and it
is simple to use.

We already added the physics components, Rigidbody 2D (to apply physics) and a Box
Collider 2D (to detect collisions), to the player in Chapter 2, Building your Project and
Character. Now we can make use of these components by adding some additional collision
objects to stop the player from running off.

To accomplish this and to keep things organized, we will add three empty GameObjects
(either by navigating to Create | Create Empty or by pressing Ctrl + Shift + N) to the scene
(one parent and two children) to manage these collision points. We will initially place each
of them at position (0,0,0). I've named them WorldBounds (parent), and LeftBorder and
RightBorder (children), as the shown in the following screenshot:

The Town View

[129]

To make these objects slightly easier to see, we will change their icons. Select the
LeftBorder, and in the Inspector, expand the icon selection drop-down menu. Select the
blue oval. Do the same for the RightBorder, shown in the following screenshot:

Next, we will position each of the child GameObjects to the left and right-hand sides of the
screen, as shown in the following screenshot:

The Town View

[130]

Next, we will add a Box Collider 2D to each border game object and increase its height just
to ensure that it works for the entire height of the scene. I've set the Y value to 15 for effect,
as shown in the following screenshot:

Move the LeftBorder and RightBorder so that their x positions are -14 and 14,
respectively. The end result should look like the following screenshot with the two new
colliders highlighted in green:

The Town View

[131]

Alternatively, you could have just created one of the children, added the
Box Collider, duplicated it (by navigating to Edit | Duplicate or by
pressing Ctrl + D), and moved it. If you have to create multiples of the
same thing, this is a handy tip to remember.

If we run the project, our character can still walk past the borders!! That is because the
character only has a Box Collider with a Trigger Component. That will check if she collides
with things, but won't stop her from passing through things. Let's give her a collider that
will stop her from passing through things.

Select the options drop-down on her Box Collider 2D component (represented by the little
cog on the right side of the component). Then select Copy Component, as shown in the
following screenshot:

Now select the options drop-down again and select Paste Component As New, as shown in
the following screenshot:

The Town View

[132]

You should now see a second Box Collider 2D component at the bottom of the Inspector
list. For the new Box Collider 2D, deselect Is Trigger, as shown in the following screenshot:

The Town View

[133]

If you run the project now, you will see that our hero can no longer escape this town, but
we can see the edge of the background, as shown in the following screenshot:

Add two more background images to deal with this issue:

The Town View

[134]

Right now, she can walk in the sky. We can fix this is the same way we stopped her from
walking too far left or right. Create two more empty GameObjects and make them children
of the WorldBounds. Name them Upperbound and Lowerbound. Give them red oval icons.
Add the Box Collider 2D component to each with an X size of 30. Move the player on to the
road and position the upper and lower bounds, as shown in the following:

Now she walks where she should! However, as we want to let her leave, we can add a
script to the new Boundary GameObject so that when the hero reaches the end of the town,
she can leave.

Journeying onward
Now that we have collision zones on our town's borders, we can hook into this by using a
script to activate when the hero approaches.

The Town View

[135]

Before we can do that, let's give our left and right borders a tag to make them easily
accessible through script. Select LeftBorder and expand the Tag drop-down menu. Then
select Add Tag…, as shown in the following screenshot:

Select the + sign on the empty list:

And create a tag called Borders:

The Town View

[136]

Reselect LeftBorder, and now Borders will be available from the Tag drop-down menu.
Select it to give the LeftBorder the Borders tag:

Tag the RightBorder with the Borders tag as well. Now that our borders are tagged, we can
create a script that will trigger an event when the player reaches the borders.

Since we don't have anything set up to happen when she reaches the edges, we will just
have a message displayed in the Console.

Create a new C# script called NavigationPrompt, clear its contents, and populate it with
the following code:

using UnityEngine;
using System.Collections;

public class NavigationPrompt : MonoBehaviour {

 void OnCollisionEnter2D(Collision2D col){
 if(col.gameObject.CompareTag("Borders")){
 Debug.Log("leave town");
 }
 }

}

Attach the NavigationPrompt script to the player character to view the Console prompt
“leave town” when she collides with a border. It's not terribly interesting right now, but we
will update the script to make something actually happen when the character hits the
border in Chapter 6, NPCs and Interactions.

The Town View

[137]

Going further
If you are the adventurous sort, try expanding your project to add the following:

Add some buildings to the town
Add the skyscraper skylines to the scene and give each a different Sprite renderer
Color property, maybe even add a script to randomly set the color
Research parallaxing backgrounds and parallax the skyscraper skylines
Add objects to the foreground layer that always render in front of the player
Add more objects to the middleground layer to create a more interesting scene

Summary
This certainly has been a very long chapter just to add a background to our scene, but
working out how each scene will work is a crucial design element for the entire game; you
have to pick a pattern that works for you and your end result once, as changing it can be
very detrimental (and a lot of work) in the future.

In this chapter, we covered the following:

Some more practice with the Sprite editor and sprite slicer including some tips
and tricks when it doesn't work automatically (or you prefer to slice it yourself)
Some camera tips, tricks, and scripts
An overview of Sprite Layers and Sprite Sorting
Defining boundaries in scenes

In the next chapter, we will cover the basics of the UI system that was implemented in
Unity 4.6.

5
Working with Unitys UI System

The next few chapters are going to require us to create a User Interface (UI). However,
before we begin with that, I want to discuss the various features of the Unity UI system.
This chapter will provide an overview of each of the elements available with the UI system
and we will utilize them in the future chapters.

The UI system was implemented in Unity 4.6 and has made the incorporation of a UI
system significantly easier than it was in the past. This UI system has essentially made any
of the old GUI functions a thing of the past. These functions are still useful for procedurally
generating a UI, but, for the most part, if you see a reference to GUI functions, it was
written prior to version 4.6 and is handling UI in a much harder way than necessary.

The following topics will be covered in this chapter:

UI Canvas
UI Text and Images
UI Layout and Rect Transform
UI Buttons

Working with Unitys UI System

[139]

UI Canvas
The UI Canvas is essentially the object that holds all of your UI elements. You can manually
add a UI Canvas or it will be automatically added to your scene when you add any other UI
element. All UI elements, including the UI Canvas, can be added by the Create menu in the
Hierarchy. All of your UI elements will be children of your canvas. When you add a Canvas
to the scene, the EventSystem object will also be added to the Hierarchy. This object allows
you to use buttons and the other UI components in an interactive way, as shown in the
following screenshot:

Working with Unitys UI System

[140]

When you first start using Canvases, you may become a little confused by the location of
your Canvas and the objects that are actually in your scene. When you first create a Canvas,
you should see a large rectangle appear in your scene, as shown in the following screenshot:

Working with Unitys UI System

[141]

Double-click on the canvas in the Hierarchy to zoom out your scene view to see the full
canvas, as shown in the following screenshot:

This large size of the canvas lets you easily see all the elements that will be in your UI
without the objects in your actual scene cluttering your view.

EventSystem
As stated previously, when you create a Canvas, a GameObject called EventSystem will be
added to the Hierarchy. This is an empty GameObject that will hold a few scripts, as shown
in the following screenshot:

Working with Unitys UI System

[142]

The EventSystem is a built-in functionality that lets you send events to objects based on
some type of input. When using UI, you need this so that your mouse inputs will work on
the respective UI element. For example, this functionality allows you to use the OnClick()
functionality of a button (described in the UI Buttons section).

Canvas Render Mode
One of the most important aspects of Canvases, in my opinion, is the ability to change the
Render Modes. These modes essentially determine how or if the various objects in your
Canvas will scale and position when the camera size changes. Setting this property correctly
will make the process of publishing to multiple platforms significantly easier, as shown in
the following screenshot:

Working with Unitys UI System

[143]

There are three different render modes: Screen Space – Overlay, Screen Space – Camera,
and World Space.

Screen Space – Overlay
Screen Space – Overlay rendering mode will make the objects in your UI automatically
scale based on the resolution of the game. It does not consider the camera. The following
screenshot shows the properties you can edit when using the Screen Space-Overlay
rendering mode:

Working with Unitys UI System

[144]

Every object in the UI will render in front of all objects within the world, as shown in the
following screenshot:

Screen Space-Overlay Canvas Render Mode example provided by Unity's Manual

Screen Space – Camera
Screen Space – Camera mode is similar to that of Screen Space – Overlay, but instead of
being completely independent of the camera, it renders all UI objects as if they are a specific
distance away from the camera. The following screenshot shows the properties you can edit
when using the Screen Space – Camera rendering mode:

Working with Unitys UI System

[145]

You can see in the preceding screenshot that for this rendering mode to work correctly, you
have to specify which camera will be used to determine how the objects render, as shown in
the following screenshot:

Screen Space-Camera Canvas Render Mode example provided by Unity's Manual

This mode is particularly helpful if you want to have a background image in your 2D game
that will automatically scale with the camera.

World Space
World Space rendering mode allows you to render the UI elements as if they are on a plane
positioned within the 3D space of the scene. The position and rotation of these elements can
be set through the Canvas's Rect Transform. They will scale based on their location relative
to the camera. The following screenshot shows the properties you can edit when using the
World Space rendering mode:

Working with Unitys UI System

[146]

This rendering mode is great for UI elements that appear in a 3D game view, such as health
bars that float over characters' heads and damage or health text that pop up in the scene, as
shown in the following screenshot:

World Space Canvas Render Mode example provided by Unity's Manual

Using multiple Canvases
You are not restricted to using a single canvas. You can have as many Canvases as you like
and each can have their own render mode. This can be very helpful if you need different UI
items to render in different modes. For example, you may want to put Heads-Up-Display
(HUD) UI elements in a canvas with a Screen Space – Overlay rendering mode and a
background image in a Canvas with a Screen Space – Camera rendering mode. You can
even place Canvases as children of other Canvases, if you want to get fancy!

In general, if you have multiple Canvases with the same rendering mode and you haven't
fiddled with their sorting order, Canvases will appear so that the one positioned lowest in
the Hierarchy's list will render in front.

UI Text and Images
The most basic components of the UI are the Text and Image objects. While you can add
interaction to them, for the most part, these will be static objects in your UI that display
information to the player.

Working with Unitys UI System

[147]

UI Text
The UI Text object allows you to place blocks of text on the Canvas. From the Text
component, which is automatically attached to any UI Text object you create, you can
control all of the properties of the text, as shown in the following screenshot:

Working with Unitys UI System

[148]

You can also adjust these individual properties through code by accessing the Text
component. The default font for all text is Arial, but if you want to use any other font, you
will have to import the font into your project.

UI Image
When you create a UI Image, an object with the image component on it will be
automatically added to your Canvas. It will initially appear as a white square until you
replace the source image. The source image must have its Texture Type in its import
settings set to Sprite (2D and UI) to be used as a UI Image. You can control all of the
properties of the image, as shown in the following screenshot:

Remember, if you are working in 2D mode, all images you bring into your
project will automatically be set to Sprite (2D and UI) texture type.

Working with Unitys UI System

[149]

The Color property will work essentially like a color overlay if you change the color from
white to a different color the image will be tinted based on the color you select. From the
Color property, you can also adjust the image's transparency.

If for some reason you want to use an image in the UI that does not have its import Texture
Type set to Sprite (2D and UI), but instead want to use an image that was imported as a
Texture, you can use a Raw Image UI object. However, the image UI object should be used
in most cases. The following screenshot shows the properties of the Raw Image UI element:

UI Layout and Rect Transform
As you may have noticed in the three preceding images, all UI objects are automatically
given a Rect Transform component when they are created, as shown in the following
screenshot:

Working with Unitys UI System

[150]

The Rect Transform component works similarly to the Transform component, in that it
allows you to position the object. However, unlike Transform, it also has the properties of
Width, Height, Pivot, and Anchors.

Remember that UI objects have the Rect Transform component, whereas
other objects have the Transform component. It's important to realize the
difference, especially if you try to access these components in code.

You can manually enter values for its position, rotation, and scale, or you can use the Move,
Size, Rotate, and Rect tool, as shown in the following screenshot:

One thing to keep in mind when working with UI objects is that all of the coordinates are
relative to the Canvas, not the actual world (unless you have your canvas render mode set
to World Space).

Rect Tool
The Rect Tool can be used to change the size, position, or rotation of UI objects, just as it can
with other non-UI elements within your scene; but it works slightly differently on UI
elements. One thing you will notice about resizing a UI object with a Rect Transform
component is that when you change its size with the Rect Tool, it will change its Width and
Height, but not affect the scale value.

Working with Unitys UI System

[151]

Pivot
The Pivot of your UI object determines where its location will register, the point at which
the object will rotate around, and the point at which the object will scale from. Adjusting the
X values of the pivot will move it left and right from the position you selected with the
anchor preset (described in the following section). Adjusting the Y values of the pivot will
move it up and down from the position you selected with the Anchor Preset. If you have
yet selected an Anchor Preset, the pivot will be positioned in the center by default.

Anchors
The Anchors property determines where the object will be attached or anchored to its
parent. Anchoring also allows the UI object to resize relative to its parent object. Each Rect
Transform will have an Anchor Preset button in the top-left corner, as shown in the
following screenshot:

Working with Unitys UI System

[152]

Clicking on it will reveal the Anchor Presets, as shown in the following screenshot:

Anchor Presets

Holding down Shift while clicking on one of the Anchor Presets will set the pivot, holding
down Alt will set the anchor position, and holding down Shift + Alt will set both the pivot
and anchor position. Once you select a preset, the Anchor Preset button's image will show
the preset you selected.

Working with Unitys UI System

[153]

UI Buttons
UI Buttons are objects that are meant to be clicked, but they can also respond to other
actions, for example, when the mouse hovers over them; the following screenshot shows the
Button component:

When you create a UI button, the Button component is automatically added to it, but an
Image component is also automatically added to it. This determines what the Button will
look like in its normal state.

Working with Unitys UI System

[154]

Transition types
By selecting from the Transition drop-down menu, you can determine how the button
reacts to being pressed, when it is hovered over, or when it is disabled. The three Transition
options are Color Tint, Sprite Swap, and Animation, as shown in the following screenshot:

Text child
When a UI Button is created, a Text child is automatically added to the Button, as shown in
the following screenshot:

Working with Unitys UI System

[155]

This child gives the button a Text label. If you don't want it, you can simply delete the child.
In the following screenshot, the Button object's Text child is selected and its Inspector is
shown:

On Click ()
The most basic functionality of a button is to click it. So, the On Click () event is already
available in a button's Inspector when it is created, as shown in the following screenshot:

Working with Unitys UI System

[156]

To tell the button what to do when clicked, simply click the plus sign at the bottom of the
On Click () event:

To tell the button what to do, you first select whether you want the event to run during
Runtime Only or During Editor and Runtime. Then you have to tell it what function is to
run when the button is clicked. You do this by first dragging the object that has the script
you want to access attached to it in the object slot. Once you do that, the drop-down menu
that states No Function will list all the scripts attached to the object. Once you select the
script, you can then select the specific function.

You can have more than one action performed when the button is clicked by simply adding
more On Click () events to the list.

Buttons have the On Click () event by default, which states what will happen when the
button is clicked; however, you can add different events by adding the Event Trigger
(Script) component:

Working with Unitys UI System

[157]

The Event Trigger component allows you to add many different types of events, as shown
in the following screenshot:

Once you select the event, hooking the event up is done in the same way in which you
assigned a function to the On Click () event.

Working with Unitys UI System

[158]

Going further
If you are the adventurous sort, try expanding your project to add the following:

Put two images on the canvas and adjust their anchor and pivot points. Then see
what happens when the resolution of the game window is changed significantly.
Place a few buttons in a canvas and experiment with the different transitions to
see how they work.

Summary
In this chapter, we covered a basic overview of the main elements of the UI system. It's a lot
of information to digest at once; therefore, this chapter is really meant to be more of a
reference chapter. We will be doing a lot with each of these types of UI element in nearly
every subsequent chapter, so don't worry, you'll get a lot of practice!

In this chapter, we covered the following topics:

Canvases
UI Text and Images
UI Layout and Rect Transform
UI Buttons

In the next chapter, we will build a conversation system. Be prepared for some heavy
scripting!

6
NPCs and Interactions

Interacting with other characters is a key feature of RPGs. So, in this chapter, we'll look to
add some more characters and give them something to say.

This chapter will discuss, in general, advanced programming techniques. Some of the
techniques may not be implemented in our game, but they are still good to know about.
Each technique will be accompanied by an example.

After we discuss the advanced programming techniques, we will implement some of these
techniques in our game to create a dialog system.

This is a heavy scripting chapter. All the techniques explained are not used
in this chapter but are important to know, and what's more important is to
know the difference between them and when to use them.

The lists of topics that will be covered in this chapter are as follows:

Advanced coding, delegates, events, and messaging
Coroutines
Scriptable objects and custom importers
Building a conversation system

Considering an RPG
When making an RPG, there is a lot to consider. So far, we have just modeled our player
using some standard statistics, but this could be done for any type of game. The thing that
sets RPGs apart is their sheer depth and interaction with the living world.

NPCs and Interactions

[160]

If you are building an RPG (or a game with RPG elements), you need to get some research
under your belt and construct your world, the places you can visit (and why), and the
characters you will be talking to or fighting with. Some games even go so far as to construct
an elaborate backstory that has nothing to do with the actual game.

RPGs have a rich history as they have been around for a long time, and there is a wealth of
information, examples, and resources to help you make a great game. One site that provides
this is called DriveThruRPG (http://rpg.drivethrustuff.com/index.php), which even
today has an ever-growing catalog of playbooks, magazines, and materials. As this site is
constantly expanding, you have a perpetual resource to continue to build your game
beyond the bounds of its first release. If you intend to make the best game out there, it'd be
best to consider its long-term future and additional content to add in later.

A lot of content on DriveThruRPG is on a paid basis; however, there is
also a lot of free resources to get you started, and a lot of the magazines
are free. Just be sure to check the license of whatever you buy to either use
it as is in your game or as a base for your own content.

Always check the license of anything you use.

Breaking it down, the main parts of an RPG that this chapter will focus on are as follows:

Interactive NPCs
Non-interactive NPCs
Enemy characters
Conversations
Experience
Maps and places
Battles

Other things you should consider (but are not covered) are as follows:

Missions
Backstory
Supporting characters (team)
Cutscenes (not essential, but they really make the game stand out)

The list might seem endless. However, if you focus on these main elements, you can always
expand later.

http://rpg.drivethrustuff.com/index.php

NPCs and Interactions

[161]

A common mistake that a lot of new developers make is to design everything for their game
from the beginning. Through experience, though, you will learn that it is better to start
small; first, you should build the main parts of your core game mechanics and then add
more content or features over time. If you architect your game in the right way from the
beginning, additional content can be added as expansions later on as extra revenue options.

Advanced programming techniques
As part of this chapter, we will start to go in depth with some advanced programming
techniques. These enable us to structure our code better and add management to our game
project, instead of just adding GameObjects to the scene.

Some of the scripts created in the following sections will only be for
example purposes and will not be implemented in our game. However, it
is recommended that you follow along. Any scripts that will be needed for
our game will be readdressed in the Adding NPCs and A Conversation
System section.

Singletons and managers
Any project of a sufficient size and complexity is going to run into issues related to
managing your GameObjects as and when they are added and removed from a scene. If you
don't get your design right from the start, you are setting yourself up for a world of mess
later. A common way to handle this is to use one of the three patterns—single instance
managers, singletons, or a dependency—system to manage these controllers for you.

Singletons are scripts that are ubiquitous to your project. They are called singletons, because
the scripts creates only a single instance of itself. There are two main ways through which
you can implement the singleton pattern in Unity. The first way is to use a public static
parameter within a class to maintain the runtime class. This also allows any other script to
access it from anywhere in the game and is useful if you want other events to cause the
manager to do something, for example, things related to conversation systems or traps. You
can also use an empty GameObject in the scene and attach a singleton pattern script to it.
However, you could cause conflicts if you add more than one pattern.

Managers, on the other hand, are just central scripts that are particular to an individual
scene to control and maintain the flow of the scene for one or many items.

NPCs and Interactions

[162]

The manager approach – using empty GameObjects
Whereas singletons are game wide, there is often a cause for just a scene-based manager.
Implementing this using an empty GameObject is very easy. Simply use Create Empty from
the GameObject menu or the keyboard shortcut, as shown in the following screenshot:

The placement of the new GameObject is up to you. If your controller's position is
important (like with an enemy spawner), place it where you want the objects to spawn
from. If not, it doesn't matter; it just needs to be in the scene somewhere. As it's an empty
GameObject, it will not be visible within your scene.

Then, create your manager script, and simply attach your script to the new empty
GameObject.

For example, if you wanted to spawn enemy objects from a collection according to a simple
repeating interval, you could use the following code:

public class EnemySpawnManager : MonoBehaviour{
 public float spawnTime = 5f;
 //The amount of time between each spawn.
 public float spawnDelay = 3f;
 //The amount of time before spawning starts.
 public GameObject[] enemies;
 //Array of enemy prefabs.

 void Start (){
 //Start calling the Spawn function repeatedly after a delay.
 InvokeRepeating("Spawn", spawnDelay, spawnTime);
 }
 void Spawn (){
 //Instantiate a random enemy.
 int enemyIndex = Random.Range(0, enemies.Length);
 Instantiate(enemies[enemyIndex],
 transform.position, transform.rotation);
 }
}

NPCs and Interactions

[163]

Then, simply attach your script to the new empty GameObject. For it to function, you will
need to assign the prefabs of the types of enemies you want to appear in the scene by
attaching them to the Enemies property, as shown in the following screenshot:

The the preceding code, the Enemies property is an array. If you view the preceding
screenshot you will see that the Enemies property has an arrow next to it. This indicates
that the property can be expanded. When adding objects to an array in the Inspector, you
simply drag the object over the name of the array. It will then be added as an object in the
array. You will see technique implemented later in this chapter as well as in future chapters.

The singleton approach – using the C# singleton
pattern
The manager approach is fine in most cases, but you have to control each instance of the
controller where it is placed. Moreover, you cannot interact with it or trigger it without
more configurations added to the Manager class, and then either bind the manager to other
objects or use the Find function.

NPCs and Interactions

[164]

If you need a true manager, a better approach is to employ the singleton pattern for
Manager class; refer to the following example:

public class MySingletonManager : MonoBehaviour {

 //Static singleton property
 public static MySingletonManager Instance {
 get; private set;
 }

 //public property for manager
 public string MyTestProperty = "Hello World";

 void Awake(){
 //Save our current singleton instance
 Instance = this;
 }

 //public method for manager
 public void DoSomethingAwesome()
 { }
}

The preceding code is just a very basic singleton implementation, which you can attach to
any GameObject in the scene.

Then, you can access the properties and functions within the singleton script by simply
calling the following method from anywhere within your project:

//Set the public property of the singleton
MySingletonManager.Instance.MyTestProperty = "World Hello";

//Run the public method from the singleton
MySingletonManager.Instance.DoSomethingAwesome();

The class can run just as any other class with updates, fixed updates, and so on. It can also
be expanded very quickly.

One of the other common uses of this pattern is the use of global variables for your project.
However, if you intend to use your singleton class across the scenes, you will also need to
ensure that it is not destroyed when the scene unloads with a simple update. This is done
by calling DontDestroyOnLoad when you initialize the class, as shown in the following
code:

public class MySingletonManager : MonoBehaviour {
 //static singleton property
 public static MySingletonManager Instance {

NPCs and Interactions

[165]

 get;
 private set;
 }
 //public property for manager
 public string MyTestProperty = "Hello World";
 void Awake(){
 //First we check if there are any other instances conflicting
 if (Instance != null && Instance != this)
 {
 //Destroy other instances if they are not the same
 Destroy(gameObject);
 }
 //Save our current singleton instance
 Instance = this;
 //Make sure that the instance is not destroyed
 //between scenes (this is optional)
 DontDestroyOnLoad(gameObject);
 }
 //public method for manager
 public void DoSomethingAwesome()
 { }
 }

There are more complicated setups for singletons. If you so wish, you can read them at
http://wiki.unity3d.com/index.php/Singleton.

There is another pattern named Dependency Injection. A more robust
way to handle the need of manager- or factory-type requirements in any
project is to implement an Inversion of Control (IoC) pattern, such as
Dependency Injection.

Dependency Injection is a large subject, so we won't cover it in this book.
The goal here is to make you aware of all the options when architecting
your project. If you would like more detailed information on Dependency
Injection, I'd recommend the post at h t t p : / / b l o g . s e b a s l a b . c o m / i o c - c o

n t a i n e r - f o r - u n i t y 3 d - p a r t - 2 / to start with, and then you can work up
from there.

Dependency Injection is a very powerful tool when employed correctly
and can make your project a lot easier, so it is worth looking at it if you are
serious. However, care is needed in its use, and it should not be used
everywhere; it should only be used where it solves a particular problem.

A good Unity-based IoC framework is StrangeIOC, which can be found at
http://strangeioc.github.io/strangeioc/TheBigStrangeHowTo.html.

http://wiki.unity3d.com/index.php/Singleton
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://blog.sebaslab.com/ioc-container-for-unity3d-part-2/
http://strangeioc.github.io/strangeioc/TheBigStrangeHowTo.html

NPCs and Interactions

[166]

Communicating between GameObjects
In any game, there are planned interactions between any components within the game.
These could be as follows:

Physics collision tests
Reacting to being shot or shooting
Opening and closing doors
Triggers, switches, or traps
Two or more characters talking

There are several ways in which you can achieve this, and each has its own particular traits.
The selection of the implementations depends on what you need to achieve. The methods
are as follows:

Delegates
Events
Messaging

In this section, we will go through each method in detail and highlight the best uses of each.

Delegates
We encounter delegates in our everyday lives. Sometimes they are managers, sometimes
they are subordinates, and they could even be the barista at your local coffee shop.
Effectively, delegates are methods that accept pieces of work to do on behalf of someone
else.

Another form of delegates is to use the C# generics and the Action or
Action<T> methods, which is a shorthand version of the implementations
mentioned in the next section. For more information about generics and
Action, refer to
http://msdn.microsoft.com/en-us/library/018hxwa8(v=vs.110).aspx.

There are two main patterns in which delegates are used: the configurable method pattern
and the delegation pattern.

http://msdn.microsoft.com/en-us/library/018hxwa8(v=vs.110).aspx

NPCs and Interactions

[167]

The configurable method pattern
The configurable method pattern is used when a piece of work or function is passed to
another method to be used to complete a task. This pattern is usually used where different
pieces of code can perform a common task in unique ways, such as walking, running, or
patrolling. All these tasks can be the default behaviors of a character. Refer to the following
figure:

Here, you will have your code calling a Delegate method, but the contents of this method
can be different depending on what you have set it to.

For instance, refer to the following code:

 using System;
 using UnityEngine; public class Delegates1{
 //Define delegate method signature
 delegate void RobotAction();
 //private property for delegate use
 RobotAction myRobotAction;
 void Start (){
 //Set the default method for the delegate
 myRobotAction = RobotWalk;
 }
 void Update(){
 //Run the selected delegate method on update
 myRobotAction();
 }
 //public method to tell the robot to walk
 public void DoRobotWalk(){
 //set the delegate method to the walk function
 myRobotAction = RobotWalk;
 }
 void RobotWalk(){
 Debug.Log("Robot walking");
 }
 //public method to tell the robot to run

NPCs and Interactions

[168]

 public void DoRobotRun(){
 //set the delegate method to the run function
 myRobotAction = RobotRun;
 }
 void RobotRun(){
 Debug.Log("Robot running");
 }
 }

This means that when the DoRobotWalk method is called, it will set the delegate to the
Walk method, and once updated, it will run the Walk behavior. If you call the DoRobotRun
public method, it will change the delegate to the Run behavior, and once updated, it will
run the Run behavior. This is a very simple kind of state machine with no conditions
around.

The delegation pattern
The delegation pattern is used where a method calls out to a helper library, and on
completion of the required task, continues on back in the main function, as shown in the
following figure:

This is usually used with what you might download from the Web. When the download is
finished, we do something with what we have downloaded.

For instance, refer to the following code:

 using System;
 using System.Collections.Generic;
 public class Delegates2{
 public class Worker{
 List<string> WorkCompletedfor = new List<string>();
 public void DoSomething(string ManagerName,Action myDelegate){
 //Audits that work was done for which manager
 WorkCompletedfor.Add(ManagerName);
 //Begin work
 myDelegate();
 }

NPCs and Interactions

[169]

 }
 public class Manager{
 private Worker myWorker = new Worker();
 public void PieceOfWork1(){
 //A piece of very long tedious work
 }
 public void PieceOfWork2() {
 //You guessed it, yet more tedious work
 }
 public void DoWork() {
 //Send worker to do job 1
 myWorker.DoSomething("Manager1",PieceOfWork1);
 //Send worker to do job 2
 myWorker.DoSomething("Manager1", PieceOfWork2);
 }
 }
 }

Alternatively, you could just express it using the C# lambdas, which simply means you
don't need to declare separate functions:

public void DoWork2(){
 private Worker myWorker = new Worker();
 //Send worker to do job 1
 myWorker.DoSomething("Manager1", () =>
 {
 //A piece of very long tedious work
 });
 //Send worker to do job 2
 myWorker.DoSomething("Manager2", () =>
 {
 //You guessed it, yet more tedious work
 });
 }

If your delegate also uses a string as a parameter, the preceding example could be used as a
download pattern where a helper library does the entire download and just returns the
XML asset. This asset can then be unpacked and used in the game in your main function.

NPCs and Interactions

[170]

Compound delegates
Both the configurable method pattern and delegation pattern are very powerful techniques
when used correctly.

Another feature of delegates is that they can be compounded, meaning you can assign
multiple functions to a single delegate. Also, when a delegate is called, all the methods
assigned to the delegate will run, as shown in the following code. This feature is very handy
when you want to chain several common functions together instead of one:

 using UnityEngine;
 using System.Collections;
 public class WorkerManager{
 void DoWork() {
 DoJob1();
 DoJob2();
 DoJob3();
 }
 private void DoJob1(){
 //Do some filing
 }
 private void DoJob2(){
 //Make coffee for the office
 }
 private void DoJob3(){
 //Stick it to the man
 }
 }

You can achieve the same output but with more flexibility using the following code:

 //A more intelligent WorkerManager
 public class WorkerManager2{
 //WorkerManager delegate
 delegate void MyDelegateHook();
 MyDelegateHook ActionsToDo;
 public string WorkerType = "Peon";
 //On Startup, assign jobs to the worker; note this is
 //configurable instead of fixed
 void Start(){
 //Peons get lots of work to do
 if (WorkerType == "Peon"){
 ActionsToDo += DoJob1;
 ActionsToDo += DoJob2;
 }
 //Everyone else plays golf
 else{
 ActionsToDo += DoJob3;

NPCs and Interactions

[171]

 }
 }
 //With Update, do the actions set on ActionsToDo
 void Update(){
 ActionsToDo();
 }
 private void DoJob1(){
 //Do some filing
 }
 private void DoJob2(){
 //Make coffee for the office
 }
 private void DoJob3(){
 //Play Golf
 }
 }

This also means it's dynamic and you can add additional functions to the delegate that will
be called whenever the delegate is called.

Word to the wise: only use chained delegates when you absolutely need
the flexibility to do so, as they are a more complex pattern to implement.
They are also difficult to debug should something untoward happen.

Events
We can describe events as expected announcements. Imagine you have a bat phone at your
desk; when it rings, you know it's Batman on the other end, usually telling you some trouble
has been averted. Events are similar to this pattern where there is a hook; this is where you
can listen for something to happen and then do something with that event. When it occurs,
additionally, through events, you can pass this information to provide yourself with
additional informaon about what has occurred, as depicted in the following image:

NPCs and Interactions

[172]

In the following code, events use delegates to describe how they are going to communicate.
It defines the form that communication will take and what information will be passed when
the event is fired:

//Delegate method definition
public delegate void ClickAction();

//Event hook using delegate method signature
public static event ClickAction OnClicked;

Now, when an event needs to be initiated in your class, all it needs to do to notify any other
code that is listening to the event is call the event such as a method using delegate as the
signature.

However, what you must be careful about is if no one is listening to the
event (no one has subscribed to it). To avoide this, you need to check that
delegate is not null before you call it.

Refer to the following code:

void Update(){
 //If the space bar is pressed, this item has been clicked
 if (Input.GetKeyDown(KeyCode.Space)){
 //Trigger the event delegate if there is a subscriber
 if (OnClicked != null){

 OnClicked();
 }
 }
}

With the event exposed, any other class or GameObject that needs to be informed about the
occurrence of the event just needs to subscribe to the event as follows, using the += syntax:

void Start(){

 //Hook on to the function's onClicked event and run the
 //Events_OnClicked method when it occurs
 OnClicked += Events_OnClicked;
}

 //Subordinate method
 void Events_OnClicked(){
 Debug.Log("The button was clicked");
 }

NPCs and Interactions

[173]

void OnDestroy(){
 //Unsubscribe from the event to clean up
 OnClicked -= Events_OnClicked;
}

It's always a good idea to clean up after yourself and unsubscribe from the
events when you no longer need them, as shown in the preceding code,
using the -= syntax.

This is a very simple example, but you could imagine exposing an event for when an enemy
is destroyed and hooking your score system into it so that the score is incremented every
time an enemy dies.

A better way is to write a separate method to call when you need to trigger the event; refer
to the following code. In this way, you don't have the preceding code repeated throughout:

//Safe method for calling the event
void Clicked(){
 //Trigger the event delegate if there is a subscriber
 if (OnClicked != null){
 OnClicked();
 }
}

Now, all you have to do whenever the event needs to be fired is call the Clicked method
that is shown in the preceding code, which is always safe and won't crash if there are no
subscribers.

As a help, this code is the template I always use when creating an event. To simplify its
creation, all you have to do to use it each time is change the name, and if necessary, the
delegate signature if you need additional parameters; the following code will tell you how
to do this:

//Logging template to send a string/report every time something //happens
public delegate void LogMessage(string message);
public static event LogMessage Log;

void OnLog(string message){
 if (Log != null){
 Log(message);
 }
}

NPCs and Interactions

[174]

Messaging
Communication is a key factor in any game. A lot of times, we just use colliders or physics
to notify two components that there is something to be aware of. This is a very basic form of
communication. Other times, we use referencing or (in the case of Unity) trawl through the
project's Hierarchy to find another GameObject to communicate with or notify.

Unity has its own messaging-type functions, such as SendMessage and
BroadcastMessage. Both functions actually implement event-style code (as in the
preceding case) without actually declaring events, but they are very slow and shouldn't be
used extensively.

The SendMessage function will call a named method on a GameObject (any method with
the same name) with a single optional parameter as follows:

void OnCollisionEnter(Collision col)
{
 col.gameObject.SendMessage("IHitYou");
}

So, it will call the IHitYou method on whatever you will collide with. By default, this will
not cause an error to be raised if whatever you collide with does not have the IHitYou
method. However, if you wish, you can change this by adding SendMessageOptions
when you call SendMessage, as follows:

void OnCollisionEnter(Collision col)
{
 col.gameObject.SendMessage("IHitYou",
SendMessageOptions.RequireReceiver);
}

If you want to send a value (there can only be one) with the call, just add it after the method
name and before SendMessageOptions (if set).

The BroadcastMessage method works in a similar way but will attempt to run your
selected method on the selected gameObject and all its children, as follows:

void OnCollisionEnter(Collision col)
{
 col.gameObject.BroadcastMessage("IHitYou");
}

NPCs and Interactions

[175]

Using either of the methods (as stated) is very slow. This is because it has to try and
discover (under the hood) if the GameObject (and its children if using broadcast) has the
method first; it will then attempt to run it. As Unity will not know until your game starts
running and whether a GameObject will have that method, it has to perform this each and
every time you try it.

A better way
To break this dependency between the GameObjects and the need to keep references or the
need to discover each other at the design or runtime stage, we need an intermediary that all
objects know about, that is, a Manager class.

With this Manager class, it will manage the list of GameObjects that want to listen to the
messages and provide an easy way to notify anyone who's listening.

To implement this, we will use the singleton behavior described earlier by creating three
simple, reusable components as a test case.

The MessagingManager.cs, MessagingClientBroadcast.cs, and
MessagingClientReceiver.cs scripts created next will be used with
our game.

First, we create the Manager class itself. So, create a MessagingManager.cs C# script and
then replace its contents as follows:

using System;
using System.Collections.Generic;
using UnityEngine;

public class MessagingManager : MonoBehaviour
{
 //Static singleton property
 public static MessagingManager Instance { get; private set; }

 // public property for manager
 private List<Action> subscribers = new List<Action>();
}

The first property is the singleton instance for the Manager class, while the second is a list
of delegates that will be used to keep track of who needs to be notified.

NPCs and Interactions

[176]

Next, we add the Awake function to initialize the singleton approach:

void Awake()
{
 Debug.Log("Messaging Manager Started");
 //First, we check if there are any other instances conflicting
 if (Instance != null && Instance != this)
 {
 //Destroy other instances if it's not the same
 Destroy(gameObject);
 }

 //Save our current singleton instance
 Instance = this;

 //Make sure that the instance is not destroyed between scenes
 //(this is optional)
 DontDestroyOnLoad(gameObject);
}

This is the same as before but with a little extra debug information, so you can see when it is
initialized in the Console window.

Then, we add a method, so we can register recipients or subscribers to the messages (with
the associated UnSubscribe and ClearAllSubscribers methods), as follows:

//The Subscribe method for manager
public void Subscribe(Action subscriber)
{
 Debug.Log("Subscriber registered");
 subscribers.Add(subscriber);
}

//The Unsubscribe method for manager
public void UnSubscribe(Action subscriber)
{
 Debug.Log("Subscriber registered");
 subscribers.Remove(subscriber);
}

//Clear subscribers method for manager
public void ClearAllSubscribers()
{
 subscribers.Clear();
}

This method just adds the delegate you passed to the Manager class to be added to the
notification list.

NPCs and Interactions

[177]

Finally, we add a Broadcast method that tells the messaging system to let all the
subscribers know that something has happened; the following code tells us how to do this:

public void Broadcast()
{
 Debug.Log("Broadcast requested, No of Subscribers = " +
subscribers.Count);
 foreach (var subscriber in subscribers)
 {
 subscriber();
 }
}

Here, we simply loop through all the subscribers and notify them using their delegates;
very simple!

As you can see, this is just a very basic messenger that, when called, will tell anyone who is
listening that something has happened; there will be no extra information, no details, just an
event. This is like the fire alarm in your building; when it goes off, you just run, you don't
(usually) ask, you don't question, you just know that when that alarm goes off, you need to
get out of the building!

To finish this Manager class off, simply create an empty GameObject in your scene and add
the script to it. There are ways to do this automatically, but I find this way to be cleaner so
that you always know what the active agents in the scene are.

Putting this to use is simple. As mentioned before, we need three scripts; we have the
Manager class, so now we need a client and a broadcast agent.

For the broadcast agent, create a C# script named MessagingClientBroadcast and
replace its contents with the following code:

using UnityEngine;

public class MessagingClientBroadcast : MonoBehaviour {

 void OnCollisionEnter2D(Collision2D col)
 {
 MessagingManager.Instance.Broadcast();
 }
}

The preceding code is just a simple example so that when attached to an object with a 2D
collider, it will trigger a broadcast. To test it, just add it to one or both of the border objects
in our game scene. In this way, if the player tries to leave the scene, it will ring the alarm
bells.

NPCs and Interactions

[178]

At the moment though, no one is listening, so let's add a listener/receiver. Create another C#
script and name it MessagingClientReceiver. This script will register for events and log
in to the Console window with some information about the object it's attached to
(obviously, there will be no information from the broadcast event as it has none); the
following code will tell you how to do this:

using UnityEngine;

public class MessagingClientReceiver : MonoBehaviour
{
 void Start()
 {
 MessagingManager.Instance.Subscribe(ThePlayerIsTryingToLeave);
 }

 void ThePlayerIsTryingToLeave()
 {
 Debug.Log("Oi Don't Leave me!! - " + tag.ToString());
 }
}

In simple words, when the GameObject script is attached to a startup, it will register itself
with the MessagingManager script, telling the Manager class to run the second method in
the script when the event occurs. As stated before, this just logs in to the Console window
for now so that we have something to see.

Just for fun, also add this script to one or both of the borders in our scene; this is simply
because we don't have anything else at the moment. You could add it to the player, making
the event an alarm that goes off and changing the ThePlayerIsTryingToLeave method to
cause the player to run in the opposite direction if you wish.

If you run the project now, you will get the following results:

One message telling you that the MessagingManager script has started.
One message per subscriber that has registered with the manager (although in
the Console window, you may just see 2 next to the event because it is the same,
if you have Collapse in the Console window selected).
When the event is triggered, you will get one message per subscriber to tell you
that they have received it. Note that each message from the client is particular to
the GameObject you attached it to as the message is different.

NPCs and Interactions

[179]

Now, you could have just executed the preceding code using the Send or Broadcast Unity
methods, and it would have been much simpler. However, you should note that since we
are using a single Manager class, which is a static instance in the scene, at no point should
any of the GameObjects involved need to know about each other. There is no need to search
the Hierarchy or add components to each other at editing time; it just works.

Background tasks and coroutines
Next up in the fabulous journey of scripting, we will cover the treacherous realm of
background tasks. We use the background tasks to start something (in the background) so
that it runs independently of the normal game update and draw cycle.

The following diagram shows that we can have a second process that runs alongside our
main game:

This is usually used for systems that are continually running and not for the main events on
the screen, such as AI, a background trading system, or even a continual webservice
gathering data for the game.

Unity also has the ability to synchronize these background threads with a simple function
that pauses the operation (or returns the control back to Unity) until the next frame of the
game is drawn (WaitForEndOfFrame or WaitForFixedUpdate), which gives you a
pattern similar the following diagram:

NPCs and Interactions

[180]

The benefit of this is that you can wait for the last update or draw cycle to finish before
running your process. You might do this if you want to render what is drawn on the screen
to an image, and either save it to a disk or upload it to a web service or website.

The Unity documents provide a good example of using this behavior; you
can find them at
https://docs.unity3d.com/Documentation/ScriptReference/WaitForEn

dOfFrame.html.

Enter coroutines
The proper way to implement long-running tasks in Unity is through the use of a feature
called coroutines. In simple words, coroutines are Unity's way of launching code in the
background, but they do have a few caveats and features around them, though.

Coroutines, by default, run on the same thread as the normal game loop. If
you are not careful, they can stop your game from running.

For more information on coroutines and the default execution order of
methods, refer to the article in the Unity docs at
https://docs.unity3d.com/Documentation/Manual/ExecutionOrder.htm

l.

Coroutines are also helpful for creating functions that you want to trigger after a set amount
of seconds.

https://docs.unity3d.com/Documentation/ScriptReference/WaitForEndOfFrame.html
https://docs.unity3d.com/Documentation/ScriptReference/WaitForEndOfFrame.html
https://docs.unity3d.com/Documentation/Manual/ExecutionOrder.html
https://docs.unity3d.com/Documentation/Manual/ExecutionOrder.html

NPCs and Interactions

[181]

IEnumerator
At their core, coroutines are just normal methods, but they are implemented using a
particular generic interface named IEnumerator as their return type. This enables Unity to
track the method's state through several iterations (runs).

Don't confuse IEnumerator with IEnumerable when defining your
coroutines; otherwise, you will find that they won't work.

To create a basic coroutine, you simply need to set up the method shown in the following
code:

IEnumerator MyCoroutine()
{
 //Do something
 //Then return
 yield return null;

}

This creates a simple single-use coroutine that performs a single function, and when it's
finished, it will die and go away.

A more common pattern is to have a loop of some kind within the function that will not
finish until some condition is met; this is done by either using a while or for loop as
follows:

IEnumerator MyCoroutine (){
 bool complete = false;
 while (!complete)
 {
 //Do some repetitive task
 //When done set complete to true

 //Then return control after each step
 yield return null;
 }
}

The preceding code will simply run in the background until the condition is met; for
example, a timer that is counting down should stop when it reaches 0.

NPCs and Interactions

[182]

Yielding
The yield operator suspends the current method on the current instruction line until the
operation is complete; however, it also allows the CPU to continue between each result that
is returned by the called method or the instruction. The following example will pause the
loop for 2 seconds between the iterations while returning the control back to the process.

Here's an example; say we have a function to print 10 lines:

IEnumerator Print10Lines()
{
 for (int i = 0; i < 10; i++)
 {
 print("Line" + i.ToString());
 yield return new WaitForSeconds(2);
 }
}

When the preceding code runs, it will simply loop 10 times, and each time it will print out
the line number. However, before continuing, it will wait for 2 seconds.

Do not confuse IEnumerator with IEnumerable. coroutines and the
yield keyword only work in a method that returns an IEnumerator
feature. This is an easy mistake that can leave you scratching your head
for hours.

Starting coroutines
There are actually two types of coroutine (it is best to think of them in that way, even
though they are actually the same thing): those that are just launched (fire and forget)
and those that can be managed. The difference is just in the way they are called. The fire
and forget coroutine functions are simply called using the following code:

StartCoroutine(MyCoroutine()); //or
StartCoroutine(MyCoroutine(MyParameter)); //to use parameters

In the preceding code, the MyCoroutine function is started using the delegate method.
Once started, it will not finish until either the function ends or StopAllCoroutines() is
called. Now, start the coroutine using the following code:

StartCoroutine("MyCoroutine"); //or
StartCoroutine("MyCoroutine", myParameter); //to use parameters

NPCs and Interactions

[183]

In the preceding code, you specify the name of your coroutine function and the method's
name using a string. This enables you to stop the coroutine from running any time (and
from anywhere) using the following code:

StopCoroutine("MyCoroutine");

The invocation path is something to be kept in mind. You might ask why not just use the
second method all the time. The answer is simple. Unity has to use slower methods to
discover the method it needs to track when you provide the coroutine's name as a string;
just passing the method's name is quicker and smoother. The best advice would be to use
each type according to its strengths. Only use the string launch method when you need to
manage a background task and use the method names when it is a short-lived function that
is solely aimed at accomplishing a single task. For everything else, just weigh up the pros
and cons of each approach as you implement it.

Coroutines can be powerful additions to the arsenal of your game's framework, but they
need to be implemented wisely; too many additions to your game (obviously) will just
grind it to a halt. If you only ever use the fire and forget coroutines, you won't be able to
stop them without shutting down all the rest as well (including those you started by
naming them as a string).

Closing the gap
So now that we understand how we call coroutines, to make the Print10Lines method
described earlier, we will call it as follows:

void Example1()
{
 StartCoroutine(Print10Lines());
 print("I started printing lines");
}

As explained, the preceding code will kick off the Print10Lines function and then
continue forward while the routing to print the lines continues simultaneously. On the
other hand, the following code will print 10 lines, and only after it is finished will it
continue and notify you that printing has finished:

IEnumerator Example2()
{
 yield return StartCoroutine(Print10Lines());
 print("I have finished printing lines");
}

NPCs and Interactions

[184]

Any method that has a return type of IEnumerator has to be called using
one of the StartCoroutine methods; just calling any method with
IEnumerator on its own will do nothing. So, keep this in mind if you are
wondering why something is not being called.

Serialization and scripting
To finish with our theory for this chapter, we need to cover serialization in Unity. Now,
Unity already serializes just about everything from the editor to your scene automatically
(with a few exceptions) when it saves and loads the scene.

There are a few fringe cases where Unity will not serialize some data.
These cases have to do with the current limitations of the Mono 2
framework that Unity uses under the hood. A full explanation of what
doesn't work can be found in the following article; note that it is very
technical and includes a link to the error report in Unity where it is
recorded:
http://www.codingjargames.com/blog/2012/11/30/advanced-unity-ser
ialization/

However, what if we want to actually use this serialization to our advantage within our
game to save and load levels. We need bits of raw game data (or as we will continue with
this later, saving conversations for our NPCs). To accomplish this, the best way is to use a
Unity-inherited object named ScriptableObject.

The ScriptableObject entity allows you to save the data within the class that uses it for
an .asset file in your project.

Saving and managing asset data
To achieve this, we simply need to create a script (named ScriptingObjects) with some
properties we want to serialize; then, we change its class inheritance from MonoBehaviour
to ScriptableObject as follows:

using UnityEngine;
public class ScriptingObjects : ScriptableObject {
 public Vector2[] MyPositions;
}

http://www.codingjargames.com/blog/2012/11/30/advanced-unity-serialization/
http://www.codingjargames.com/blog/2012/11/30/advanced-unity-serialization/

NPCs and Interactions

[185]

Great! So we have some serializable data. However, to use it in the editor, we need to create
an option in the editor to create and save these assets for us. Create a new folder called
Editor under Assets\Scripts.

Create a new script named PositionManager in the Assets\Scripts\Editor folder, and
replace its contents with the following code:

using UnityEngine;
using UnityEditor;

public class PositionManager : MonoBehaviour
{
 //Define a menu option in the editor to create the new asset
 [MenuItem("Assets/Create/PositionManager")]
 public static void CreateAsset()
 {
 //Create a new instance of our scriptable object
 ScriptingObjects positionManager =
 ScriptableObject.CreateInstance<ScriptingObjects>();

 //Create a .asset file for our new object and save it
 AssetDatabase.CreateAsset(positionManager,
 "Assets/newPositionManager.asset");
 AssetDatabase.SaveAssets();

 //Now switch the inspector to our new object
 EditorUtility.FocusProjectWindow();
 Selection.activeObject = positionManager;
 }
}

Any script that uses the UnityEditor namespace has to be placed in a
special Editor folder. This ensures that it is only packaged with the editor
solution and not used in the deployed game. Game projects are not
deployed with the editor.

There is a lot to explain about the preceding code, but it is all commented very well. In
short, the code works as follows:

We define a menu option from where we will call our creation code
We set up a new object that we want to serialize and create the file where it is to
be stored
We change the view of the editor to focus the inspector on the new object

NPCs and Interactions

[186]

If you create custom classes to be used in serialization, you must tag those
classes with the [System.Serializable] attribute. Otherwise, Unity
will not know that they are for serialization. We will cover more on this
later in the implemented example.

If you return to Unity now and right-click on the Asset folder (or click on the Create menu
option in the Project view), you will see the new menu option you just created, as shown in
the following screenshot:

NPCs and Interactions

[187]

After clicking on it, you will see your new asset in the Project view (in the location you
saved it to, in this case, the root of the Asset folder) and the Inspector view for your item,
as shown in the following screenshot:

NPCs and Interactions

[188]

If we rename our new serialized object, give it some values, and save the scene or project,
we will see the following screenshot:

NPCs and Interactions

[189]

We go from the preceding screenshot to the following code stored in the .asset file (when
opened from the .asset file generated in Unity from File Explorer):

%YAML 1.1
%TAG !u! tag:unity3d.com,2011:
--- !u!114 &11400000
MonoBehaviour:
 m_ObjectHideFlags: 0
 m_PrefabParentObject: {fileID: 0}
 m_PrefabInternal: {fileID: 0}
 m_GameObject: {fileID: 0}
 m_Enabled: 1
 m_EditorHideFlags: 0
 m_Script: {fileID: 11500000, guid: fa9c23f7a21df484a96802b68617f3b6,
type: 3}
 m_Name: MyPositions1
 m_EditorClassIdentifier:
 MyPositions:
 - {x: 10, y: 10}
 - {x: 20, y: 20}
 - {x: 30, y: 30}
 - {x: 30, y: 30}
 - {x: 40, y: 40}

There is a fair amount of Unity information in the preceding code, but what is important is
our serialized data at the bottom. So, if we wish, we can edit this file outside of the editor
and it will be reimported next time you open Unity.

Using the serialized files in the editor
Using the files in the editor is a very simple task. Simply create a property in any script
using the type of your serialized asset and then assign a project asset in the editor.

For example, edit the MessagingManager script and add the following property:

public ScriptingObjects MyWaypoints;

NPCs and Interactions

[190]

Then, the script will be exposed in the Inspector pane and you can assign it normally, as
shown in the following screenshot:

You will also be able to access the contents of the serialized object from that script as well.

You cannot edit the contents of the serialized file in the assigned property
by default. This is only achievable using a custom property inspector.
However, it is still editable in the editor by opening the Asset folder.

Accessing the .asset files in the code
Now, if you don't want to assign the asset through the editor, there is a way to just load the
.asset file directly from the project.

Firstly, to do this, you will need to store your .asset files in a special folder named
Resources in your Asset folder. You can read them there directly using Unity's own
resource functions once.

As an example, open the PositionManager script and add the following function:

public static PositionManager ReadPositionsFromAsset(string Name)
{
 string path = "/";

 object o = Resources.Load(path + Name);
 PositionManager retrievedPositions = (PositionManager)o;
 return retrievedPositions;
}

NPCs and Interactions

[191]

This function, which is available from anywhere as it is static, will perform the following
tasks:

Using the Name parameter, it will read the .asset file from the root of the
Resources folder
It will convert the retrieved file to the correct object type
It will return the deserialized object to the calling function

Now you can call up the data contained within your .asset file anywhere in your game
project.

The same kind of pattern can also be used to download the .asset files
from the Web for your project to add DLC or expand the levels of your
game. A word to the wise, though; if you do go down this route, be sure to
compress and encrypt your assets that are meant for downloading to
protect your IP.

Also, if you have any dependent files, such as images, be sure to
download them separately.

However, to use the downloaded files as assets in your scene, you will
require them to be packaged as asset bundles.

Adding NPCs and a conversation system to
our game
Right, after all of that brain input, let's start applying it to our game. In this chapter, we are
aiming to add an NPC to our scene that will interact with the player.

Before moving forward, we should also do with a little tidying up of our Scripts folder,
since we are generating a lot more content now. To do this, perform the following steps:

Under Assets\Scripts, create three new folders: Classes, Messaging, and
Navigation.
Copy the Entity and Player scripts to the new Classes folder or create them if
you haven't already.

NPCs and Interactions

[192]

You may delete all of the files created in this chapter (or place them in an
Examples folder) except MessagingManager.cs,
MessagingClientBroadcast.cs, and MessagingClientReceiver.cs as we
will use those shortly.

If you created the Messaging scripts, move the Messaging to the Messaging
folder, and likewise, the Navigation scripts to the Navigation folder.

In Chapter 4, The Town View, we added the street, sidewalk, and sky to the scene. Included
in the buildingsAndRoads.png sprite sheet were some buildings as well. If you have not
already done so, import the hospital, the shop, and the town hall in to the scene. When you
do so, make sure you set their Sorting Layer to Background so that they will display
properly.

You can place the hospital and shop wherever you want; just makes sure you place their
entrances between your LeftBorder and RightBorder. I scaled the hospital down a bit to
place it in my scene. In Chapter 11, Shopping for Items, we will allow the character to enter
the shop so that she can go shopping for inventory items. Place the town hall toward the
LeftBorder so that the Mayor, when standing in front of the building, can act as a
gatekeeper for that exit.

The following screenshot demonstrates the way I laid out my town's buildings:

The sprite sheets for three NPCs are included with the book files: Doctor.png,
Mayor.png, and Shopkeep.png:

NPCs and Interactions

[193]

You can import all three of these sprite sheets into the project, set their sprite mode to
Multiple, and Automatically Slice each with the pivot set to Bottom now, but we will only
use the Mayor character in this chapter. We will use the Shopkeep NPC in Chapter 11,
Shopping for Items, when we start discussing inventory.

By now, you should be a pro at slicing sprite sheets, but if not, refer to the
steps presented in Chapter 2, Building Your Project and Character, that we
used to import the player character.

Also, since the player and the Mayor will be conversing, import the MayorFace.png
images and PlayerFace.png as single sprite images:

We need to add some personality to our NPCs as well as our hero. In Chapter 2, Building
Your Character and Project, we outlined some classes to describe and manage the entities in
the game, so let's bring them in now.

Add the Mayor to the left-hand side of the scene, next to the LeftBorder and in front of the
town hall door. We are placing him here because in the next section, he is going to stop our
hero from going further in this direction, as it is just too dangerous for such an impetuous
youth.

NPCs and Interactions

[194]

To do this (using the lessons you have learned already), perform the following steps:

If you haven't done so already, import the Mayor.png character sprite sheet and1.
use Sprite Editor to slice it up.
Drag the sprite labeled Mayor_1 (the one of the Major facing forward) in to the2.
scene in front of the town hall.
Rename the new GameObject created Mayor.3.
In the Sprite Renderer component, set the Sorting Layer to Middleground.4.
Finally, add a Box Collider 2D component with the settings shown in the5.
following screenshot. This is so that the collider is of the same width as that of the
Mayor but with a larger height so that the player will collide with it whenever
she walks in front of him. Also, set the Is Trigger property to true/checked.

The final result will look something like the following screenshot:

NPCs and Interactions

[195]

Let the player walk around the NPC
Currently, when the player walks behind the Mayor, she appears behind him, but when she
walks in front of him, she also appears behind him!

Set the Mayer's Order in Layer under the Sprite Renderer component to -1. This will make
the player (whose sorting order is set to 0) always appear to be in front of the Mayor:

NPCs and Interactions

[196]

But this still doesn't work! Now, when she walks behind the Mayor, she still appears in
front of him!, as shown in the following screenshot:

To fix this, we will have to use (you guessed it!) code.

Create a new C# script in your Assets/Scripts folder, and call it Sorting.cs:

 using UnityEngine;
 using System.Collections;
 public class Sorting : MonoBehaviour {
 public Transform player;
 // Update is called once per frame
 void Update () {
 if(transform.position.y>=player.transform.position.y){
 Debug.Log("behind player");
 GetComponent<SpriteRenderer>().sortingOrder =
 (player.GetComponent<SpriteRenderer>().sortingOrder)-1;
 }
 if(transform.position.y<player.transform.position.y){
 Debug.Log("in front of player");
 GetComponent<SpriteRenderer>().sortingOrder =
 (player.GetComponent<SpriteRenderer>().sortingOrder)+1;
 }
 }
 }

The preceding code will continually check the position of the player versus the position of
the object on which this code is attached. It will then move the object in front of or behind
the Player through the sorting order.

For this code to work properly your player and Mayor must both have
their pivot points (determined when you sliced their sprite sheets) set to
bottom. So, if the code does not work correctly for you, check their pivot
points.

NPCs and Interactions

[197]

Attach the script to the Mayor and then drag the Player to the Player slot, as shown in the
following image:

In the preceding screenshot, I reset the Mayor's Order in Layer to 0, but it
really does not matter what it is set to, as the Sorting.cs script will
override the value.

You can use this Sorting.cs script on other objects you want the player to
walk around. But, be warned, if you have objects in the scene in the
Middleground layer that only appear appropriately with specific sorting
orders, the script will remove those sorting orders.

NPCs and Interactions

[198]

Stopping the player from walking through the
NPC
So, the player can walk circles around the Mayor (no pun intended), but she can also walk
straight through him. To stop this, we are going to use a Box Collider 2D componet.

Currently, we have a Box Collider 2D component attached to the Mayor, but it has Is
Trigger set to true. The box collider will be used to trigger a dialog box, but it does not
actually stop her from passing through it.

The thing that makes this difficult, is we cannot actually use one Box Collider 2D to stop her
from passing through the character, if we want her to still be able to walk around him. To
demonstrate what I mean, add a standard box collider to the Mayor that encompasses his
whole sprite:

NPCs and Interactions

[199]

This is going to cause the player to stop before she even really appears to get close to him
and it is going to stop all of the fancy stuff we did in the previous section with sorting order
from even being apparent.

So, to fix this, we are actually going to add two new Box Collider 2D components to the
Mayor and we are going to turn them on and off depending on where the player is in
relation to the Mayor, similar to the way we handled the sorting order.

Add the two Box Collider 2D Components with the following properties:

NPCs and Interactions

[200]

I hid the town hall and the sidewalk in the previous screenshot so that you could more
easily see the colliders in the image.

Now, we are going to update our Sorting.cs script so that it turns these Box Collider
2D components on and off based on the player's position.

Adjust your Sorting.cs script so that it reads as follows:

if(transform.position.y>=player.transform.position.y){
 Debug.Log("behind player");
 GetComponent<SpriteRenderer>().sortingOrder =
 (player.GetComponent<SpriteRenderer>().sortingOrder)-1;
 GetComponents<BoxCollider2D>()[1].enabled=false;
 GetComponents<BoxCollider2D>()[2].enabled=true;
}
if(transform.position.y<player.transform.position.y){
 Debug.Log("in front of player");
 GetComponent<SpriteRenderer>().sortingOrder =
 (player.GetComponent<SpriteRenderer>().sortingOrder)+1;
 GetComponents<BoxCollider2D>()[1].enabled=true;
 GetComponents<BoxCollider2D>()[2].enabled=false;
}

Let's look more closely at the code that reads GetComponents<BoxCollider2D>()[1]
and GetComponents<BoxCollider2D>()[2].

Since we had more than one Box Collider 2D component attached to the Mayor, to enable
and disable the specific ones we wanted, we had to use GetCompoents. The brackets after
the parentheses state which BoxCollider2D we wanted to access. This is because
GetComponents returns an array and the first one (in order from top to bottom) in the
Inspector is at index 0 of the array, the second at index 1 of the array, and so on. The
following screenshot demonstrates this point:

NPCs and Interactions

[201]

Getting the NPCs talking
So far in this chapter, we have our town populated with characters and buildings. Now,
let's give our hero something to talk about.

While building a conversation system for any game, there are many factors to consider,
which are as follows:

How long a conversation is going to be (we don't want the player to get bored
with miles of text)?
How many parties are likely to be involved in any discussion?
Is this a flat one-sided conversation (such as a cutscene), or will the player be
allowed to make decisions?

NPCs and Interactions

[202]

Are there going to be branches in the conversation so that the conversation will
change based on the player's response?
How much content do you expect to be used in conversations (text, video,
cutscenes, animation, and so on)? All of this content will decide just how
extensible your system needs to be.
Will the conversation need to support any outbound triggers or states? Will the
conclusion of a conversation unlock a door or grant the player some experience
or items?

There are lots of other factors that will affect both the design and implementation of a
robust conversation for your game, so think about it carefully before touching the code.

For this book, we are going to build a basic conversation system that is
enough to meet the goals of the project at hand. However, I am explaining
each part along the way, so if you want to expand on it, you can.

The conversation object
When we want to start talking in the game, we first need to decide what you want to
include in the conversation. You can include the following things:

The name of the character who is speaking
The text of the conversation
An image of the character talking
Choices
The position of the chat

The more you look at it, the more you can dream about what you want to include. You just
need to remember the KISS principle (Keep it simple, stupid), that is, start small and then
build on it.

So, create a new C# script, name it ConversationEntry in Assets\Scripts\Classes,
and populate it with the following code:

using UnityEngine;

[System.Serializable]
public class ConversationEntry {
 public string SpeakingCharacterName;
 public string ConversationText;
 public Sprite DisplayPic;

NPCs and Interactions

[203]

}

This gives us just the basics for our conversation system with regards to who's
speaking—an optional picture that can be displayed in the conversation and most
importantly, the conversation text to be displayed.

We also tag this class with the System.Serializable code attribute so that the Unity
serializer knows what to do with it.

Saving and serializing the object for later
With our core conversation entry object generated, we can start to store the conversations in
the .asset files for use in our game and also make it possible to create the conversations
outside of Unity if you wish.

As a conversation is (usually) more than just an opening line, we need a management object
that will support several lines/entries of the conversation and a couple of switches to denote
whether the conversation has already been played. This way, if you have multiple
conversations configured for a character, it will simply play the next conversation and not
repeat itself. You could just track this on the object that you attach the conversations to, but
this is cleaner.

As a rule of thumb, you should always keep flags, settings, or properties
for a thing with another thing. If you start having variables to track the
state of a thing elsewhere, it can get very messy. The only time this is not
true is when a thing is meant to be shared across multiple objects.

Also note that the ScriptableObject entities are a fickle beast. They let
us attach them to the GameObjects, and they can be automatically
serialized and saved as part of the project. However, they are fixed assets
that should only be edited in the editor. If you need to alter them as part of
the game, you will need to save and store that change of state separately.

This is just a simple note to remember when architecting such things.

So, create another C# class in Scripts\Classes named Conversation and populate it
with the following code:

using UnityEngine;

public class Conversation : ScriptableObject {

 public ConversationEntry[] ConversationLines;

NPCs and Interactions

[204]

}

Now, the first thing you will note is that this class is derived from a scriptable object class.
As described earlier, this is what enables us to use Unity's serialization methods and store
them as an .asset file.

We are not done yet as we need that final hook to enable us to create these (at least initially)
in the editor.

Earlier, I showed you all of the code needed to create the asset for serialization, but this is
rather a lot of code to be generated all the time. So, it's better to place that logic in a separate
helper class that we can reuse rather than repeat ourselves all the time.

Earlier, with the PositionManager example, we created assets in the editor and reused
them. You can reuse this code if you wish, but to simplify things, I added a little helper
script to the example project in Assets\Scripts\Editor called
CustomAssetUtility.cs.

The CustomAssetUtility class does all the work that the preceding code does. It also uses
the C# generics so that it can be reused for any type of SerializableObject you want to
throw at it. You don't have to use the class I provided; you can just use the code earlier
instead if you wish; just replace the code where the helper function is used.

If you have not done so already, create a new folder in Assets\Scripts named Editor,
get the CustomAssetUtility class, and place it in the Assets\Scripts\Editor folder.

C# generics is a fairly advanced C# topic, which we won't go into in this
book. If you want to know more, check out
http://msdn.microsoft.com/en-us/library/ms379564(v=vs.80).aspx;
alternatively, it will be better to try The C# Programming Yellow Book, Rob
Miles, Department of Computer Science, The University of Hull, which is a
fantastic C# primer book available at
http://www.robmiles.com/c-yellow-book/.

To show how we use this, let's create our editor script, which will create the conversation
assets for us. Create a new script named ConversationAssetCreator in the Editor
folder under Assets\Scripts and then replace its contents with the following code:

using UnityEditor;
using UnityEngine;

public class ConversationAssetCreator : MonoBehaviour {

 [MenuItem("Assets/Create/Conversation")]

http://msdn.microsoft.com/en-us/library/ms379564(v=vs.80).aspx
http://www.robmiles.com/c-yellow-book/

NPCs and Interactions

[205]

 public static void CreateAsset()
 {
 CustomAssetUtility.CreateAsset<Conversation>();
 }
}

Remember, any script that uses the UnityEditor namespace has to be
placed in a special Editor folder. This ensures that it is only packaged
with the editor solution and not used in the deployed game. Game
projects are not deployed with the editor.

So, by using the helper function, instead of all the tangle of code to first generate our asset
and then save it, we simply call our utility, tell it the type of asset we want to create (in
angle brackets), and away it goes. I have crated the utility as well, so it can also take a string
parameter if you want to force the folder you want to create the asset in; otherwise, it will
take whatever is currently selected in the editor.

To test this out, create a new folder in the Asset folder named Resources (so, we can call
assets directly from the code if we so wish) and then create another folder in Resources
named Conversations:

NPCs and Interactions

[206]

This just keeps all our conversations in one place and doesn't clutter up the hierarchy. If you
wish, you could create further subfolders to identify characters, places, or whatever else
you fancy. It won't have an impact on the running of the game; it will just keep it tidy.

With the Conversation folder under Assets\Resources\ selected, click on Create in the
Project menu. You will see a new option named Conversation (as you can see in the script
earlier, this is what we named it):

NPCs and Interactions

[207]

When you click on it, a new Conversation asset will appear, as shown in the following
screenshot, which is ready for you to start configuring:

NPCs and Interactions

[208]

Name the conversation MayorWarning and give it the lines and images shown in the
following screenshot:

NPCs and Interactions

[209]

The conversation component
The last thing we need is a simple component that enables us to attach conversations to a
character or other GameObject.

So, create a new class in the Assets\Scripts\Classes folder named
ConversationComponent and replace its contents with the following code:

using UnityEngine;
public class ConversationComponent : MonoBehaviour {
 public Conversation[] Conversations;
}

Nothing's complicated for now; the preceding code just holds an array of the possible
conversations that the GameObject can have. Ideally, you would want to expand on this for
a fuller conversation system, such as a pointer to the next conversation, or a way to track
how many conversations have taken place, and so on.

Building a basic conversation system
In order for our conversation assets to be of any use, we need a mechanism to play these
conversations on the screen and have the user interact with them (if that's how your game
rolls). For this, we need another manager that will take in conversations from characters
and display them on the screen. If we had any logic, branching, or decisions in our
conversations, it would handle those too.

Now, there are two basic approaches that we could take with the conversation system: one
being reactive (where we use a messaging system to notify the manager that a conversation
needs to take place) and one being just a utility (where scripts can request for a conversation
to take place). Both are valid approaches, and it really comes down to personal preference
as to which one you want to implement. To keep things simple, let's create the basic utility
first and then point out where it can be enhanced.

The manager
If we create our conversation manager as we did before with the messaging manager, we
start with the simple singleton framework. However, we will lean on one of the great
examples from Unity Wiki as our base.

NPCs and Interactions

[210]

In the sample project under the Assets\Scripts\Classes folder, you will find a
Singleton class that was sourced from http://wiki.unity3d.com/index.php/Singleton.
This simply saves us time and code while creating singleton objects for use in our games
and ensures they always have the same consistency. Get this script and place it in your
Assets\Scripts\Classes folder.

Make sure you get the Singleton.cs script and put it in your project or
the following CoversationManager.cs script will not work.

With this in place, we can define our Conversation manager quite simply. Create a new
C# script in Assets\Scripts named ConversationManager and replace its contents with
the following code:

using System.Collections;
using UnityEngine;

public class ConversationManager : Singleton<ConversationManager>
{
 //Guarantee this will always be a singleton only -
 //can't use the constructor!
 protected ConversationManager () {}

}

Now that we have our manager, we can start adding functionality to it.

Starting a conversation
We want our manager to take one of our conversation items and do something with it
because we have a manager. So, create a new function as follows:

public void StartConversation(Conversation conversation)
{}

This enables us to start a new conversation anywhere in the code using the following code:

ConversationManager.Instance.StartConversation(conversation);

http://wiki.unity3d.com/index.php/Singleton

NPCs and Interactions

[211]

Preparing the UI
The manager is in place and we have a method to start a conversation, but it's not doing
much right now. We will use the built in UI functionality discussed in Chapter 5, Working
with Unity's UI System.

When the player walks in front of the Mayor, we are going to have a pop-up window
display the conversation that ensues. To achieve this, we will create a panel that holds the
text and image from the conversation we just set up.

To begin, create a Canvas, by navigating to Create | UI | Canvas:

NPCs and Interactions

[212]

When you create the Canvas, the Event System is also automatically created. To keep my
hierarchy nice and tidy, I prefer to drag this on to the canvas so that it becomes a child of
the canvas, as shown in the following screenshot:

Now, we are going to use a panel to serve as the window in which the dialog appears.

Right-click on the canvas, and select UI | Panel. To view the panel and the Canvas, double-
click on the panel in the hierarchy.

You will see something like this:

When initially created, the panel appears as a semi-translucent rectangle that fills the entire
area of the Canvas. Rename the panel Dialog Box.

Now, let's make it a bit smaller. Start by setting the Anchor and Pivot Point to center-
middle, by holding down Alt + Shift and selecting the middle-most Anchor Presets.

NPCs and Interactions

[213]

Now, change the width and height of the Rect Transform component to 300 and 100,
respectively:

NPCs and Interactions

[214]

If you press play, you should now see a greyed box permanently in the center of the screen.
Don't worry, we will make it go away shortly.

Now, let's add a place for the image and text to appear. Right-click on the panel, and select
UI | Image. Then right-click on the panel, and select UI | Text. You will see the following:

NPCs and Interactions

[215]

We are going to now make the image appear on the left side of the dialog box and the text
on the right. We also want them to stretch to the height of the box.

Let's start with the image. Rename it Speaker Image. Change the Rect Transform settings
of the image so that they appear as shown in the following screenshot. Also, in the Image
component, select Preserve Aspect Ratio:

NPCs and Interactions

[216]

Now, rename the text Dialog Text. Also, change the Rect Transform settings and the Text
component settings so that they appear, as shown in the following screenshot:

NPCs and Interactions

[217]

Your panel will now appear as follows:

Let's also change the image settings of the dialog box so that it is slightly more opaque as,
right now, it is a little difficult to see. Select the white box next to the Color property on the
Image component of the dialog box. Increase the A (alpha) value to around 230, so the box
will still be slightly transparent:

NPCs and Interactions

[218]

We are now done setting up our panel so that it can hold the image and text. Now, all we
need to do is make it not appear permanently on the screen. To do this, we will add a new
component to the panel, the Canvas Group component. In the Dialog Box's Inspector, select
Add Component | Layout | Canvas Group.

The Canvas Group will allow us to affect the alpha, intractability, and blocks raycast
settings of the panel. Change the settings of the Canvas Group so that they appear as
follows:

Now, you should no longer see the Dialog Box in the scene, since we set its alpha to 0.

For now, we are done working with the UI and will do everything else via code. Don't
worry, though, you will get more practice with the UI systems, as we will use the UI system
more in nearly every chapter from here on out.

NPCs and Interactions

[219]

Displaying the conversation
Now, let's add some simple logic to display the text of the conversation on the screen.

Starting things off, we need some new properties in ConversationManager to control
what needs to be displayed. So, open up the ConversationManager script and add the
following properties to it:

//Is there a converastion going on
bool talking = false;

//The current line of text being displayed
ConversationEntry currentConversationLine;

//the Canvas Group for the dialog box
public CanvasGroup dialogBox;

//the image holder
public Image imageHolder;

//the text holder
public Text textHolder;

Each property explains its use, but everything will become clear as we add the rest of the
functionality.

To use the UI properties, we must add the following line at the top of the script:

using UnityEngine.UI;

Next, we'll add a coroutine that will take a Conversation object and loop through all the
lines to be displayed. Add the following function to the ConversationManager script:

IEnumerator DisplayConversation(Conversation conversation)
{
 talking = true;
 foreach (var conversationLine in conversation.ConversationLines)
 {
 currentConversationLine = conversationLine;
 textHolder.text = currentConversationLine.ConversationText;
 imageHolder.sprite = currentConversationLine.DisplayPic;
 yield return new WaitForSeconds(3);
 }
 talking = false;
}

NPCs and Interactions

[220]

This simple coroutine takes the conversation passed to it and loops through each of the
individual lines of the conversation's text. Before we start, we set the talking flag to
denote that a conversation is in progress; then, for each conversation line, we perform the
following tasks:

Set a pointer to the current conversation item in the list with the
currentConversationLine property
Add the text and image to the text and image holders
Wait for three seconds before moving on to the next conversation item
When we run out of conversation lines, we set the talking flag to false to
show that we have finished

So, we have a coroutine looping through the text. The next thing to do is to use this
information to display it on the screen. For this, we need an OnGUI method in our scripts as
follows:

void OnGUI()
{
 if (talking)
 {
 dialogBox.alpha = 1;
 dialogBox.blocksRaycasts = true;
 }
 else{
 dialogBox.alpha = 0;
 dialogBox.blocksRaycasts = false;
 }
}

Remember when we set up the dialog box, we set its alpha to 0 and made it so that it would
not block raycasts. Now, we will turn the alpha and ability to block raycast back on when
talking is true and back off if talking is false.

So, when the talking flag is set, Unity will know that it has to display our conversation
GUI on the screen.

To finish this off, we need to call the coroutine from our public method, which other
scripts can use to start a conversation and find the information for the dialog box and its
subobjects:

public void StartConversation(Conversation conversation)
{
 dialogBox = GameObject.Find("Dialog Box").GetComponent<CanvasGroup>();
 imageHolder = GameObject.Find("Speaker Image").GetComponent<Image>();

NPCs and Interactions

[221]

 textHolder = GameObject.Find("Dialog Text").GetComponent<Text>();
 //Start displying the supplied conversation
 if (!talking)
 {
 StartCoroutine(DisplayConversation(conversation));
 }
}

Connecting the dots
So now that we have something to talk about, we just need to be able to attach it to the
characters and then start displaying it on the screen for the player to interact with.

First, we need an empty class for our NPCs. So, create a new C# script named Npc in the
Classes folder under Assets\Scripts and replace its contents with the following code:

using UnityEngine;
public class Npc : MonoBehaviour
{
 public string Name;
 public int Age;
 public string Faction;
 public string Occupation;
 public int Level;
}

As NPCs are things we generate and place into the scene, we actually need
to break the convention to inherit from the Entity class. This is actually a
limitation in Unity, because only scripts that derive from MonoBehaviour
can be attached to GameObjects in a scene. If you try to attach a class that
uses or derives from ScriptableObject, the editor will throw an error.
So, as we are adding NPCs in our scene in the editor, we need to use a
separate script.

If you were generating the towns procedurally or loading them from a
pre-built save file, then you could still use classes based on
ScriptableObject.

With that created, add the Npc.cs script to the Mayor in our scene (don't forget to name
your character in the Inspector pane as well).

Next, add the Conversation component to the Mayor's NPC script and then drag the

NPCs and Interactions

[222]

conversation we just built to that character in the Conversations array. Do this by dragging
it over the word Conversations.

The Inspector pane will now look like the following screenshot:

So now that our character has a script and we have the ConversationManager set up, we
just need to trigger the conversation when the hero tries to exit the left side of the screen.

To broadcast the message when the player touches the long Box Collider attached to the
Mayor, we need to add the MessagingClientBroadCast script to the Mayor. Since the
Box Collider 2D attached to the Mayor we want to interact with is set as trigger, we need to
update our MessagingClientBroadCast script to include the following:

void OnTriggerEnter2D(Collider2D col)
{ MessagingManager.Instance.Broadcast(); }

NPCs and Interactions

[223]

So, now when the player walks in front of the Mayor, the message will be broadcasted.

To finish off, we just need to get the Mayor NPC to listen for the message the player will
leave and then start his conversation. So, remove the MessagingClientReceiver script
(that was created in the Messaging section) from the left border that you set up earlier and
add it to the Mayor NPC GameObject.

The Mayor's inspector will now appear as follows:

NPCs and Interactions

[224]

Now, the Mayor is subscribing to and receiving the messages for the player leaving. Next,
update the MessagingClientReceiver script (in the Messaging folder under
Assets\Scripts) and update the ThePlayerIsTryingToLeave method with the
following code:

void ThePlayerIsTryingToLeave()
{
 var dialog = GetComponent<ConversationComponent>();
 if (dialog != null)
 {
 if (dialog.Conversations != null && dialog.Conversations.Length > 0)
 {
 var conversation = dialog.Conversations[0];
 if (conversation != null)
 {
 ConversationManager.Instance.StartConversation(conversation);
 }
 }
 }
}

Here, we look to see if a ConversationComponent script is on the GameObject it is
attached to. If it is, we see if there are any conversations defined for this NPC; if yes, we call
the ConversationManager script and ask it to start the first conversation.

Granted, this is a simple example and should be extended in a full system
to track conversations that are played or conditions that need to be met for
a conversation to be played.

At the moment, the conversation system will keep on going even after you
have left the vicinity of the character that you are talking with.

Lastly, if you did not do so earlier in the Messaging section, create an empty GameObject in
the scene, name it Messaging Manager, and attach the MessagingManager script to it.
Open the MessagingManager script and remove the following code, if you added it earlier,
as this is not going to be used in the game:

public ScriptingObjects MyWaypoints;

NPCs and Interactions

[225]

Now, if you run the project and try to exit on the left side, the Mayor will harass you, as
shown in the following screenshot:

Going further
If you are of the adventurous sort, try to expand your project to add the following features:

Add other objects to the scene and have their sorting order update appropriately
compared to the player. The Sorting.cs script is a very basic sorting script. You
may need to create a much more complex version if there are multiple objects in
the scene that need specific sorting orders.
Create an idle animation for the Mayor using the forward facing sprites, so it
appears that the Mayor is fidgeting; then, add it to a new Animator component
attached to the Mayor's GameObject.
Apply the scriptable object technique to other areas of the level.
Extend the Conversation manager to step the text letter by letter in the
conversation text with another coroutine.
Expand the event's messenger to support different types of event, passing text, or
an object.
Have another conversation start if the player returns to the Mayor after their
initial conversation.
Add some conversation logic to terminate the conversation if the player gets too
far from the source.

NPCs and Interactions

[226]

Summary
What a marathon! This certainly has been the heaviest chapter so far, but there were a lot of
advanced techniques to cover, and to do them justice, they needed a lot of explanation.
Building a conversation system for any game needs a lot of planning to ensure you get the
features you need for your game.

The lessons you learned in this chapter will set you in good stead for the future features.

We covered the ways to communicate between the GameObjects using events, delegates,
and messaging solutions. We also covered working with background tasks and coroutines,
serialization and scriptable objects, and constructing our own conversation system.

In the next chapter, we will set up a world map that will allow the player to go places other
than the town in which she starts out.

7
The World Map

As we start considering the wider bounds of our RPG world, we need to look at alternate
views for the game. It's important to keep players engaged and make them feel that they are
entering a vast arena with lots of places to explore, especially when you initially release
your game and you only have a few towns to visit.

Another thing to consider is whether you want fixed maps in your game or you want to
venture down the rabbit hole of procedural generation. Both are valid routes and there's
nothing to say that you only have to use one. In this chapter, we'll cover all the options and
then implement a nice and simple system to walk through the basics.

The following topics will be covered in this chapter:

Resources to build a map
Structuring and adding points of interest
Working with prefabs
Transitioning between scenes

The larger view
Our budding hero is now ready to pack her bags and leave the shelter of her hometown for
the wider world. So, we need to widen the scope of what the player can see and build a
large map with places of interest to visit.

This usually opens the floodgates for just how big your game will be. Planning can decide
whether your game will be a hit or feel just too short.

The World Map

[228]

Maps in RPGs certainly aren't mandatory; several hit games just go from place to place with
maybe an animation or cut scene to show movement. However, in the best cases, a map just
opens up the scope of the game and gives the player an understanding of the world they are
traveling in.

Types of map
When looking at what kind of map or world you are going to choose to connect the dots
between places to visit or secret hideaways, there are a few paths you can take. Generally,
there are two options, which are as follows:

Fixed: In this option, images are usually drawn by an artist and have extensive
detail of the world surrounding the player or are blank, exposing places as the
player travels to or discovers them
Generated: In this option, each run of the game completely randomizes the
places to go or events that will take place, with the focus being on
unpredictability

Both the preceding options are perfectly valid and there's nothing to say you need to focus
on just one or the other-mix it up if you wish. Generally, the greater the variety, the better
the chances of the player being engaged in your game—it will entice them to explore and
play more.

Another keen element is that it should support repeatability and replayability—let players
return to existing locations and discover new things, and reuse what you have to the fullest.

Fixed maps
There are many resources to get maps for your title if you don't have a dedicated artist and,
in some ways, these also provide insight or creative juice for how you want your maps to
look.

The first site to mention, primarily because it is also completely free, is
http://freefantasymaps.org/. Another useful site is the Cartographers' Guild at
http://www.cartographersguild.com/. This is a veritable map paradise with lots of
content available for use in most projects. Unlike the preceding site, all works are protected
and you will need to purchase them or gain rights to use them. However, they are of a very
high quality.

http://freefantasymaps.org/
http://www.cartographersguild.com/

The World Map

[229]

When browsing maps and art, always be sure to check the license and
usage policies of the images you download. This should be done
whenever you acquire art, even from Google. Be safe, check, and get
permission.

The same can be said for code and any other kind of asset. If in doubt,
check the license and even if it's free, just check with the author whether
they feel it's okay to use in your project.

Always check the license on anything you download and use.

Generated maps
There are also many other resources out there to get maps for your game. Another method
is to use an online map generation system. Now, to be fair, most are aimed at tabletop
gamers and most are of a low quality, but there are a few gems to be found. For example,
http://donjon.bin.sh/fantasy/world/ provides fairly high-resolution generated images
and includes world features and places.

DonJon's site also offers a vast array of other generators to build maps and other RPG
elements. There are even name and game dialog generators, so it really does meet most
RPG needs.

In-game generated maps
Now, if you want more control over what the player sees or will have in their game, you
can go all the way and start building maps and more through either Unity's asset pipeline
or in code within the game.

External tools such as Tiled (http://www.mapeditor.org/), which is shown in the following
image, can be used to build and design maps. It has many interesting features and can even
output several layers. You can use either top-down, 2D side scrolling, or even isometric
maps.

A great Unity example of this is a project called uTiled
(https://bitbucket.org/vinull/utiled), which provides a Unity asset that can read maps
from Tiled.

Alternatively, you could use procedural techniques (see the Going procedural section of this
chapter) to build the map while the game is running by using the framework to knit
individual segments of your map together. We will discuss this more later.

http://donjon.bin.sh/fantasy/world/
http://www.mapeditor.org/
https://bitbucket.org/vinull/utiled

The World Map

[230]

Going procedural
If you are the bold or adventurous sort, another route to flesh out your world is to
procedurally generate it. What you usually see when you look for procedural generation in
Unity are dungeon generators. In fact, some of the best examples I've seen out there involve
randomly generated dungeons where every run of the game is different from the last. Other
examples are usually found in endless running games where a style of procedural selection
is done to choose the next running area or to put random scene items in.

When we try to apply this to RPG games, we want to balance the fixed part of the
world/story we are looking to convey with a more random placement of towns/villages or
places of interest. This will make the world we see different for every player but still convey
the background of the theme.

Now, the whole subject of procedural generation is far too large to go into for this book, but
I can give you a few points for where to look.

The best place to start is the Procedural Content Generation Wiki available at
http://pcg.wikidot.com/; it's the go-to place to start learning the following general
techniques:

Iterated function systems: These are fractals to create land masses or structured
areas.
L-systems: These are used for road or path generation
Diamond-square and midpoint displacement algorithms: These are used to
create random height terrain
Perlin and simplex noise systems: These are used to add further randomness to
the generation

A word to the wise

Procedural generation is not for the faint of heart. There is a lot of math
involved and a lot of trial and error. However, if you can master small
parts, you can achieve a truly wondrous game with lots of replayability.

Procedural generation is too large a subject for this book. Hopefully, I've
given you a few tips and tidbits to get you going so you know what to
look for should you want to venture down this road.

http://pcg.wikidot.com/

The World Map

[231]

Creating our game's map
Moving on from theory, we need to look at something to put on our map of the world, such
as somewhere for our player to travel to and explore.

We not only need to provide graphical support in the game to open up areas on the map or
just show the journey between two points, but we also need to connect these points with
scenes in our game.

Adding the world map
Start off by copying the following map image into your project in the
Assets\Sprites\Environment folder:

I created the preceding map image very quickly using the Hexagon Pack provided by
Kenny on opengameart.org found at h t t p : / / o p e n g a m e a r t . o r g / c o n t e n t / h e x a g o n - p a c k - 3

1 x. You can find the full set in the code bundle that accompanies the book. I thought these
tiles were incredibly well made and, dare I say, adorable. You can easily combine these
assets in some photo-editing software to create a map of your choice.

http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x
http://opengameart.org/content/hexagon-pack-310x

The World Map

[232]

If you are interested in a free photo-editing program to help with game art
creation, check out the program called GIMP found at h t t p : / / w w w . g i m p . o r g

/.

I highly suggest you check out the other art provided by this artist at h t t p : / /

o p e n g a m e a r t . o r g / u s e r s / k e n n e y. He has provided many free high-quality
art assets that can assist you in making 2D games of various genres.

With that imported into your project, open the scene named Overworld that you created in
Chapter 2, Building Your Project and Character. Drag your map image to the scene. Increase
the size of the MainCamera to 6 and position the map sprite so that you your scene appears
as shown in the following screenshot:

Remember that the size of the camera simply determines the size of the rectangular area the
camera will display.

http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://www.gimp.org/
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney
http://opengameart.org/users/kenney

The World Map

[233]

Adding a player prefab to the overworld
Let's add the player to the scene. Instead of creating the player sprite and adding all of the
appropriate components, let's create a prefab for the player to save ourselves some time.
Navigate back to your Town scene.

Select Player from the Hierarchy and drag it to the Assets/Prefabs/Characters folder.
Upon doing so, you should now see the following in your Project view:

Also, Player should now be represented by blue text instead of black in the Hierarchy.
Select the prefab and set its Transform coordinates to 0.

It's a good practice to reset the position transform for prefabs to 0; this
makes reusing them a whole lot easier.

The World Map

[234]

When you create a prefab, you essentially create an object that you can reuse that contains
all of the same properties. This is really helpful when you have an object in one scene that
you want to duplicate to another.

When you create a prefab and use it in your scene, any changes to the
prefab will be automatically updated on all the objects you created with
that prefab. However, changes to those objects do not update the prefab or
any other copies. All changes are one way from the prefab.

If you want to update the prefab, select the Prefab option in the editor and
change it. Alternatively, select an instance in the scene, change the
required properties, and then click on Apply to save the changes back to
the prefab, as shown in the following screenshot:

This will only affect existing components and properties that were already
on the prefab. To add new components or scripts to the prefab, you must
edit the prefab itself.

Now that we have a Player prefab, navigate back to your Overworld scene. Drag the
Player prefab into your scene, as shown in the following screenshot:

The World Map

[235]

Because we used the prefab, the player's ability to walk around and animate is already
included!

Adding places of interest
Now that we have a general map in place, let's add some places for the player to go. We will
start by adding a sprite to represent the town that we have been working with in the last
few chapters. I chose the hexagon-
pack/PNG/Tiles/Modern/modern_oldBuilding.png sprite from the Hexagon Pack to
represent my town (the following figure), since it looks similar to the town hall in the Town
scene. Feel free to peruse the other premade tiles provided or make your own tiles with the
images in the hexagon-pack/PNG/Tiles/Terrain and hexagon-pack/PNG/Objects
folders.

The World Map

[236]

Import the image into your project by placing it in the Assets\Sprites\Environment
folder. Then place it in your scene wherever you want your town to be located. Place the
character near the town so that, when the scene starts, it looks as if she had just exited the
town, as shown in the following screenshot:

The World Map

[237]

Rename the object MapPoint and add a Box Collider 2D component to it. Set the Box
Collider 2D to Is Trigger. Also, set the Sprite Renderer component's Order in Layer to
1. That way, these objects will always appear above the map, as shown in the following
screenshot:

With a collider set as a trigger, it will cause the OnTrigger functions
(OnTriggerEnter2D and OnTriggerExit2D) to be called in scripts as
opposed to the normal OnCollision functions (OnCollisionEnter2D
and OnCollisionExit2D). Bear this in mind when applying scripts that
rely on a collider.

Now drag the town object to the Assets\Prefabs\Environment folder to create a prefab
of the object.

The World Map

[238]

Once the prefab is created, we can start to use it since this game object has now become the
first instance of our MapPoint prefab. So, rename the instance on the scene Town, and then
create a new tag called Town. Assign the tag to the object, as shown in the following
screenshot:

We will create a second place on the map that will represent a camp site. Add the following
image, hexagon-pack/PNG/Tiles/Modern/modern_campsite.png, to your project by
placing it in the Assets\Sprites\Environment folder:

The World Map

[239]

Next, create a new instance of our MapPoint prefab by dragging the prefab on to the scene,
as shown in the following screenshot:

Rename it Campsite and create/set a tag with the same name. Now, replace its image with
the modern_campsite.png image by dragging the new image to the Sprite slot of the
Sprite Renderer component, as shown in the following screenshot:

The World Map

[240]

Due to the scope of this book, we are going to limit the character's movement on the map to
the area visible by the camera. We could easily allow the character to walk further by
removing the blockades we are about to include and adding a script to the camera that
follows the player. In the same manner that we added borders to our town, we will now
add them to our overworld, as shown in the following screenshot:

As you can see from the preceding screenshot, I made the box colliders overlap slightly
with the bounds of the camera. That way, the player stops before she reaches the absolute
edge of the screen.

Do not let these colliders overlap with the colliders of the town or
campsite. Doing so will make the scene transition code trigger instantly.

Leaving town
Currently, our character can walk back and forth in the town and walk around in the map,
but she can't go between the two scenes. Since the game will start off in the town, let's begin
by allowing the character to leave the Town and enter the Overworld.

The World Map

[241]

Creating a NavigationManager script
To navigate between scenes, we could add a simple SceneManager script that says when
you hit this collider, go to a specific scene, but if you are planning a larger world with a
large number of interactions, it is better if we build a separate navigation system so that we
have everything in one place; it's just easier to manage that way.

This separation is a fundamental part of any good game design. Keeping the logic and game
functionality separate makes it easier to maintain in the future, especially when you need to
take internationalization into account (but we will learn more about that later).

In Chapter 4, The Town View, we created a NavigationPrompt script that we will rewrite
and tie into a manager script. As you may recall, we added the tag Borders to the
LeftBorder and RightBorder. This allowed the NavigationPrompt text to output the
message "leave town" in the console.

Let's return to our Town scene and change these tags. Create new tags called Construction
and Overworld. Apply the Construction tag to the LeftBorder and the Overworld tag
to the RightBorder, as shown in the following screenshot:

Next, let's create a new C# script called NavigationManager in
Assets\Scripts\Navigation and then replace its contents with the following lines of
code:

using System.Collections.Generic;

public static class NavigationManager{

 public static Dictionary<string, string> RouteInformation = new
 Dictionary<string, string>() {
 { "Overworld","The big bad world"},
 { "Construction", "The construction area"},
 };

 public static string GetRouteInfo(string destination){
 return RouteInformation.ContainsKey(destination) ?

The World Map

[242]

 RouteInformation[destination] : null;
 }

 public static bool CanNavigate(string destination) {
 return true;
 }

 public static void NavigateTo(string destination){
 //we'll talk about this in a second :)
 }
}

Notice the ? and : operators in the following statement:

RouteInformation.ContainsKey(destination) ?

RouteInformation[destination] : null;These operators are C#
conditional operators. They are effectively the shorthand of the following:

if(RouteInformation.ContainsKey(destination))
{
return RouteInformation[destination];
}
else
{
return null;
}

Shorter, neater, and much nicer, don't you think?

For more information, see the MSDN C# page at
http://bit.ly/csharpconditionaloperator.

http://bit.ly/csharpconditionaloperator

The World Map

[243]

The script is very basic for now, but contains several following key elements that can be
expanded to meet the design goals of your game:

RouteInformation: This is a list of all the possible destinations in the game in a
dictionary

This is a static list of possible destinations in the game, and it is a core part of
the manager as it has everywhere you can travel in the game in one place.

GetRouteInfo: This is a basic information extraction function

This is a simple controlled function to interrogate the destination list. In this
example, we just return the text to be displayed in the prompt, which allows
more detailed descriptions that we could use in tags. You could use this to
provide alternate prompts, depending on what the player is carrying and
whether they have a lit torch, for example.

CanNavigate: This is a test to see if navigation is possible

If you are going to limit a player's travel, you need a way to test if they can
move, allowing logic in your game to make alternate choices if the player
cannot. You could use a different system for this by placing some sort of
block in front of a destination to limit choice (as used in the likes of Zelda),
such as an NPC or rock. As this is only an example, we can always travel and
add logic to control it if you wish.

NavigateTo: This is a function to instigate navigation

Once a player can travel, you can control exactly what happens in the game:
does navigation cause the next scene to load straight away or does the
current scene fade out and then a traveling screen is shown before fading the
next level in? Currently, there is nothing here, because we have a few more
things to take care of before we can navigate to new scenes.

You will notice that the script is a static class. This means it sits in the background, only
exists once in the game, and is accessible from anywhere. This pattern is useful for fixed
information that isn't attached to anything; it just sits in the background waiting to be
queried.

The World Map

[244]

With this class now created, we will update the NavigationPrompt script to communicate
with our NavigationMananger script. Update the collision function in the
NavigationPrompt script to now reference the NavigationMananger, rather than looking
directly at the object's tags, as the shown in the following code:

void OnCollisionEnter2D(Collision2D col){
 if(NavigationManager.CanNavigate(this.tag)){
 Debug.Log("attempting to exit via "+ tag);
 NavigationManager.NavigateTo(this.tag);
 }
}

We will also remove this script from the Player and add it to the LeftBorder and
RightBorder. To remove it from the Player, remove it from the Player prefab in the
Assets/Prefabs/Characters folder. You will notice when the prefab is changed, it
updates in the scene. This will also be true of the Player in the Overworld scene.

Now when you run into the borders, a message will appear in the console telling you that
the player is attempting to leave town and the tag of the exit the player is attempting to use.
Because there is no code in the NavigationManager.NavigateTo function, nothing else
happens yet.

Blocking off paths
We still have a bit of work to do to our NavigationManager script. Let's add code that
enables us to have a simple mechanism to say whether a route is traversable or not. (In real
scenarios, this should be serialized or it should have a manager for the player to remember
where the player has traveled; otherwise, it is never going to get unlocked.)

Open up the NavigationManager script and create a new struct method as follows at the
top of the class:

public struct Route{
 public string RouteDescription;
 public bool CanTravel;
}

The World Map

[245]

Next, we need to update the RouteInformation variable to use this new struct method
and update the information for the two destinations that we have already configured in our
manager. This should enable us to state that you can travel to the big bad world but not to
the construction area, as follows:

public static Dictionary<string, Route> RouteInformation = new
Dictionary<string, Route>() {
 { "Overworld", new Route { RouteDescription = "The big bad world",
 CanTravel = true}
 },
 { "Construction", new Route { RouteDescription = "The construction area",
 CanTravel = false}
 },
};

As we are now using a struct method for our destination information, we also need to
update the GetRouteInfo method to access the dictionary correctly and return the routes'
description if found; we do this using the following code:

public static string GetRouteInfo(string destination)
{
 return RouteInformation.ContainsKey(destination) ?
 RouteInformation[destination].RouteDescription :
 null;
}

With that in place, all we need to do is check whether the CanTravel flag is true when the
system requests, and if you're allowed to travel, update the CanNavigate method with the
following code:

public static bool CanNavigate(string destination)
{
 return RouteInformation.ContainsKey(destination) ?
 RouteInformation[destination].CanTravel :
 false;
}

Here, we simply look at the destination from our route information and return with
information on whether the player is allowed to travel there or not.

Now, when you try to go to the construction area, you won't get the prompt from
NavigationPrompt about attempting to leave.

The World Map

[246]

Updating build settings to include new scenes
Before we can have code send us from scene to scene, we must update our build settings. To
add new scenes, we need to set up the Build Settings options for our project to tell it we
have some additional scenes to choose from. Open Build Settings by navigating to File |
Build Settings from the main menu or using Ctrl + Shift + B on the keyboard. The Build
Settings window looks this:

As you can see in the preceding screenshot, the Scenes In Build list is currently empty. So,
when we run the game, it will just run the current scene in the editor.

The World Map

[247]

To update this list, either drag the scenes from the project Hierarchy or use the Add Current
button to add the scene you are currently viewing. So, add the two current scenes into the
Scenes In Build list, as shown in the following screenshot:

Now, one important thing to note is the order of the scenes. As you may expect, Unity will
always start the project with scene 0, so be sure that the town is the first scene in the list.
You can do this by simply dragging the scenes up or down.

This ordering of scenes is very useful and powerful. Some developers like
to put levels in order so that they can use the index to progress through.

However, if you are having trouble with a particular scene in your game
when running on a device, another trick is to reorder the scenes in the
build so that the troublesome one is the starting scene. This saves you
from having to keep playing through until you get to that scene or writing
code to accelerate you. Granted, you need to ensure that whatever settings
required for the scene are set on load if you debug this way.

Changing scenes
Now that both of our scenes are in the Build Settings, we can write code to navigate
between them. Return to the NavigationManager script and add the following code at the
top of the script:

using UnityEngine.SceneManagement;
And update the NavigateTo function as such:
public static void NavigateTo(string destination){
 SceneManager.LoadScene(destination);
}

In older versions of Unity, you could transition between scenes using
Application.LoadLevel ("name of level"); however, this code is
now depreciated and will no longer work.

The World Map

[248]

Now when you exit toward the left side of the Town, you immediate enter the Overworld.

Returning to town
Since the town and campsite have their Box Collider 2D components set as triggers, we
need to swiftly update our NavigationPrompt script to work with triggers. So, open the
NavigationPrompt script and add the following function to it:

void OnTriggerEnter2D(Collider2D col){
 if(NavigationManager.CanNavigate(this.tag)){
 Debug.Log("attempting to exit via "+ tag);
 NavigationManager.NavigateTo(this.tag);
 }
 }

The function in the preceding code does exactly the same as the OnCollisionEnter2D
function, which we already have, but this will now respond to the colliders that have been
set as triggers using the is Trigger flag.

Updating the NavigationManager script
As the player can now venture out of town, we need to update our NavigationManager
script with additional places to visit, including our town. We can do this simply by adding
additional highlighted routes to our NavigationManager script as follows:

public static Dictionary<string, Route> RouteInformation = new
 Dictionary<string, Route>() {
 { "Overworld", new Route {
 RouteDescription = "The big bad world", CanTravel = true}},
 { "Construction", new Route {
 RouteDescription = "The construction area", CanTravel = false}},
 { "Town", new Route {
 RouteDescription = "The main town", CanTravel = true}},
 { "Campsite", new Route {
 RouteDescription = "The campsite",
 CanTravel = false}},
};

The World Map

[249]

Now, attach the NavigationPrompt script to the MapPoint prefab in the
Assets/Prefabs/Environment folder. Since you added it to the prefab, when you select
the Town and Campsite objects in the scene, you will see they now contain the script. If you
play the game, you will see you can quite easily navigate between the Overworld and the
Town.

Going further
If you are the adventurous sort, try expanding your project to add the following:

Make map bigger and allow the character to walk further
Add a camera-tracking script similar to the camera script we have already
created, so that the player can move further around the map
Create new scenes for the places to visit and get some more characters and
conversations going
Update the player's starting position when she enters the town from the map
Create a transition animation to add fading between scenes

Summary
Hopefully, you can appreciate by the end of this chapter how even a simple map-like
interface has its own flavors and complexities, but there is so much more you could do to
enhance this area. Depending on your style of game, the player could spend quite a lot of
time on the map exploring (such as Zelda) or they could just be zipping through. So, plan
time accordingly to decide how much you want to invest.

If you target mobile platforms, then other input strategies are very important. On handheld
devices, it doesn't really make sense to have the player move around the scene with a
keyboard.

In this chapter, we covered the following topics:

Building the wider world using textures, texture generation tools, map tools, and
some hints at procedural generation
Adding the ability to transition between scenes

In the next chapter, we are going to start building our turn-based battle system!

8
Encountering Enemies and

Running Away
At the heart of most RPG-style games are the bad guys. How they think and how they
confront and challenge you will mark your game as either too hard or too easy. Sadly, there
isn't any real middle ground (you can't please everyone all the time). However, we can
ensure a fair system and engage the players with systems that will surprise and entertain
them as they move around in the big bad world.

The following topics will be covered in this chapter:

Planning for event systems
State machines
Basic AI techniques

Event systems
When you're looking to engage the player roaming around in your game, it is best to throw
them off guard and challenge them when they least expect it; this ensures that the player is
paying attention while playing and also serves to keep them on their toes at all times.

The following methods help to achieve this:

Fixed systems: This is where the places and interactions are actually planned in
advance by forcing the player to be drawn in to an event at prescribed
times/places

Encountering Enemies and Running Away

[251]

Random generation: This involves using random systems to challenge the player
within a given time frame or occurrence, giving the player a chance of an event
but not a certainty of one

There are merits and demerits with either approach for the player as they interact with your
game. Fixed systems are easy to implement but limit replayability (game becomes dull in
the second or subsequent runs), whereas random systems can be trickier to get the balance
right but also means the player will likely keep playing longer or get irritated very quickly.

Finding the balance between implementing events is a tricky process, as you will have to
find the right sweet spot for in your particular game, and inevitably all games implement
this differently.

Also, remember that there is no silver bullet and no reason not to use both systems
together—using fixed systems to tell a story and random events to keep it interesting.

Exploring randomness
Now one strange thing to keep in mind is that there is no such thing as a completely
random system, especially in gaming and computing. You can get close with some really
complex mathematical systems but nothing is truly random. The best we can do is make it
random enough to fool the player, making them believe it is random.

The reason for this is simple: computers are not random and don't think in random terms.
When they generate a random number, they are using a seed (a unique number to base their
random generation on) to work out what number to give you. But every time you generate
a number based on that same seed, it will always be the same sequence; this is known as
pseudo-random.

Most basic systems try to balance this out by also randomly generating the seed number,
but this again falls under the same pattern. However, it does make the random pattern a
little more random. A lot of systems use the date or current clock tick as the seed. It's
important to know and remember this when you are planning to use random systems.

There is also a drawback to trying to make your random system even more random: you
end up spending more time computing the random number in your game and stealing
resources from other systems such as physics, AI, and so on. It's always a balancing game to
ensure you plan where your precious system resources are going to be spent.

Encountering Enemies and Running Away

[252]

In most cases, developers use other effects to try to create randomness by using noise
generating systems (Perlin/fractals/Gaussian drift) and other techniques to try to make the
best use of low-cost generation systems with as few passes needed. By combining two or
more systems, you can create an approximate and fairly complex random system.

If you want to read up more on random and pseudo-random systems, you
can get a full history on RANDOM.ORG at
http://www.random.org/randomness/, which also features some examples
of free and paid random systems.

There is another side to this predictability of basic random number generation systems:
these can be used in various procedural techniques to build game items. If you can predict a
sequence of numbers based on a particular seed, you can use that sequence to always build
the same thing each and every time.

So, if you want a set of events to always occur in a particular order, you can actually use the
basic random system to create a fixed event system; just use the seed you need to generate
the sequence you need to use.

True randomness
There is another course of logic in random generation systems called True Random
Number Generators (TRNGs). They go to great lengths to guarantee the randomness of a
generated number with greater and greater precision, but these also come at a heavy cost (if
you really need them, however, they are worthy of study).

In games, however, it is usually sufficient to rely on pseudo-random systems, both for their
efficiency as well as their predictability. Another reason is that you often don't want 100
percent randomness; you want something like a shuffle bag or similar to ensure that the
event happens randomly enough within a time frame.

Planning for random code/generation
A key point of any good game design when you even start to think about adding random
code/generation to your game is to stop, look, and listen. Never rush into using random
systems in your game, or you may end up rewriting it multiple times.

http://www.random.org/randomness/

Encountering Enemies and Running Away

[253]

Start working from a simple base and ask yourself the following questions:

Do I actually need it to be random or will it get configured?

This is the first and most important question: are you trying to add random
code/generation because it's easier to throw in, or will a fixed configuration
be more suitable (is it really random you're after)?

Never use randomization lightly, even when it is just a range of numbers you
want to pick from; always question whether it is the right tool for the job.
Inevitably, using randomization is always going to be more expensive in
terms of processing than a simple mathematical equation to approximate the
values you are after. Do your research.

Where in your design do you see the need for randomization?

Be specific! What do you actually need to be randomized or sampled?

For example, in this RPG project for the random battle events on the map, we
need to figure out the following:

The chance of an event occurring on a journey
Where on the journey the event will occur
What will be the starting condition of the battle, number of enemies,
their strength, and who fights first

In each area, how frequently will you need a random sample?

Because of the cost of random selection, you need to decide when and where
the generation will take place. If you need a single random for each frame,
that might be okay (depending on what else is happening in each frame); but
if you have many, then it may be better to prefill an array of random
numbers at the start of the scene and perform a predictive selection of
numbers in that array (either stepping through or selection based on other
factors).

What level of complexity does the random sampling/generation need?

So once you've decided where you need randomization and how often you
need it, only then do you decide on how complex that generation needs to be.
Is it simply picking a random number or do you need a more accurate
random number predication by using one of the aforementioned complex
techniques, such as Perlin noise or fractal sampling?

Encountering Enemies and Running Away

[254]

In a lot of cases, only testing will tell how random you need to be. When
testing, ask yourself if the current technique's pattern seems to obvious or if it
hampers gameplay.

For the purposes of this book, I will keep the use simple; this section is mainly to highlight
all the complexities of using random systems in games. This might sound like a nice idea to
begin with, but beware, here be dragons, even if it's just as simple as a single random
number picked in a range in each frame.

Another important consideration is that random generation is not free.
Depending on the system you use, it could also generate garbage and
hamper the performance of your game that may not seem obvious at first
glance.

Basic Artificial Intelligence
Artificial Intelligence (AI) is a term bandied around most game systems and is a general
bucket for several techniques for machine-based learning systems. Its sole aim is to fool the
user/player into believing that the system is behaving like any living being. AI usually
presents itself in the form of characters that challenge the player in head-to-head battles or
helpful supporting characters.

Some systems used to achieve this are as follows:

Path-finding: This helps AI-controlled entities navigate through levels to a
specific destination
Flocking: This orders how multiple AI entities will relate to each other within a
given area
State machines: These are fixed and basic sensor-driven intelligence to drive AI
actions
Rule-based expert systems: These are the defined logic systems for an AI entity
to derive action from and aid decision-making
Neural networks: These are advanced learning networks for AI entities, typically
used to predict the performance of the AI and also understand the predictable
behavior of opponents
AI algorithms (reinforced learning/simulated annealing/genetic calculations):
These are many different ways to reinforce neural networks and decision engines
for better predictable behavior

Encountering Enemies and Running Away

[255]

The area of AI can be a very complicated minefield. It is often seen by some as a nice thing
to have; however, getting it right is a very long and drawn out task no matter the size of the
project.

My advice, especially if you are just starting out, is to lean on existing implementations,
either through the asset store or the Unity wiki, to begin with and learn from there. The
whole subject of AI has spawned numerous books and entire sites such as
http://aigamedev.com/ (a fantastic general resource).

Start simple and move from there. For the purposes of this book and the RPG game, we will
focus on a simple state machine implementation using basic sensors to help drive the AI.

State machines
In life, as well as in game development, state machines (or Finite State Machines as they
are more commonly called) are a core component for day-to-day running. At a basic level,
they tell us exactly what we are doing right now, what we were doing previously, and what
we can do next.

They are commonly used for the following:

Menu systems
Game-level transitions
AI/behaviors

We can implement these within games in various ways, from the very basic (and generally
hard to manage) to a more ordered system and beyond with full state managers.

A basic state machine is like a flowchart and looks something like the following diagram:

http://aigamedev.com/

Encountering Enemies and Running Away

[256]

Defining states
In all implementations, we start with a collection of states, which define both what
conditions/states are in the game and what we do when that state changes.

These states describe both what can happen when that state is active and what other
potential states could result in an action from the current state. If we look at an example that
describes a simple case using a television (TV), we would end up with the states listed in
the following table:

State Description Actions

TV off No activity is present and nothing is
displayed.

The power button turns the TV on.

TV on The TV displays images and plays
sound.

The power button turns the TV
off.
The up button selects the
previous channel.
The down button selects the next
channel.
The menu button displays the
menu.

Menu displayed The TV displays the menu, overlaying
the normal display.

The power button turns the TV
off.
The menu button turns the TV on
(menu hidden).
The up button highlights the
previous menu item.
The down button highlights the
next menu item.
The ok button activates the menu
item.

So from each individual state, there are a number of options; in some cases, the same action
will lead to the same result (such as the power button) and some actions will do different
things based on what the current state is (such as the up and down buttons).

It's important to note that in any game, you will likely use many state systems, from menus
to in-game controls and AI.

Encountering Enemies and Running Away

[257]

So, once you have your collection ready, the next step is to define an enumeration in C# as
follows, for example, using the previous states:

enum TvState
{
 Off,
 On,
 Menu
}

Simple singular choice
The simplest way to implement a state system is using the C# switch statement; the benefit
here is that there can only be a single result:

if (Input.GetButtonDown("Up"))
{
 switch (currentTvState)
 {
 case TvState.Off:
 //Nothing, tv is off
 break;
 case TvState.On:
 //Channel Up
 break;
 case TvState.Menu:
 //Menu selection up
 break;
 }
}

So, as you can see in the preceding example, we have simply implemented the pattern for
the Up button on the remote, and depending on what the TV is doing currently, it will act
appropriately.

This is good for menus, but is limiting in situations where, based on the state, we might
want to do multiple things.

Encountering Enemies and Running Away

[258]

Planning for multiple cases
The alternate simple approach to state machines is to use the if blocks to test what a state
is: the only downside is that this can become very cumbersome to manage very quickly.
Consider a slightly more complex scenario (related to the game) where a group of thugs are
battling with you, but they are only confident when they are in a group and will run if their
health is not good. Such a system wouldn't be possible using the previous switch style (or
at least will be difficult to do so), so by using several if blocks, as shown in the following
code, we can achieve something like the following:

if (EnemyState == State.Idle)
{
 //Check for player
 // If player found EnemyState == State.Attacking
 //Check for fellow enemies
}
if (EnemyState == State.Attacking && PlayerState == State.Idle)
{
 //Enemy Sneak attack
}
if (EnemyState == State.Attacking)
{
 //Play Attacking Music
}
if (EnemyState == State.Attacking && Health < 5)
{
 //Run away
}
if (EnemyState == State.Attacking && PlayerState == State.RunningAway)
{
 //Give Chase
}

Now, although the previous code can be nested or transformed into switch statements,
writing it this way gives us other advantages. For one, we control when and under what
conditions certain things will happen, for example:

Battle music will always be played when the battle begins
Enemies will chase the player unless they have low health
At any point that the player is idle, the enemies will have a sneaking advantage

However, with either system, you are going to end up with a lot of code-making decisions
around your game, such as the player, enemies, Non Player Characters (NPCs), and so on.
This will make it hard to manage and even worse to try debug; perhaps Unity offers us
another way?

Encountering Enemies and Running Away

[259]

State managers
Following on from the animation tutorial in Chapter 3, Getting Animated, we have seen that
Unity has a very powerful state machine system built in it already using Mecanim. We have
only used it for animation so far, but like AnimationCurves, we can use this to build a nice
graphical system that is easier to maintain.

Although the state machine is very powerful for controlling what states
are available and how they transition between states, it can't actually
implement actions (other than animation). There are triggers built into the
state system, but these are not fully supported on all platforms. So if you
use them, keep it limited.

To achieve this properly, you need to separate out the responsibilities for what does what
within the state system into the following parameters:

Inputs: What factors will be fed into the state system to affect change
The decision engine: The core logic that drives the state machine
Outputs: What the game will do based on the current state

The preceding diagram shows an example of how you would componentize your state
machine; this pattern is very extensible because it means you can apply separate scripts for
each of the inputs, which also means many areas of the game can have an input to the state
system. The outputs/reactions to states or state changes can also be componentized (but
don't have to be) so that you can swap and change AI behaviors to the different states based
on what you are implementing them on. Enemy 1 may be very brave and just act, and
Enemy 2 might be a bit more cautious and require other enemies close by before attacking.

Encountering Enemies and Running Away

[260]

Implementing this in Mecanim animation controllers is very simple since at its heart it is a
state machine itself, as shown in the following screenshot:

The preceding screenshot is a preview of the state manager we will create
later in this chapter.

In the preceding screenshot, we can see a simple example of this: there are no animations
connected to any of the states. We are just using them to track and control what drives our
state machine. Using the parameters, it's easy to configure the following settings:

If the player is seen, the enemy attacks
If the player is seen and is attacking, the enemy should defend
If the player attacks when the enemy is attacking, the enemy should defend
If the player stops attacking, then the enemy should attack back
If at any time the enemy health is less than 2 and the player's health is greater
than 2, the enemy should run away
If at any time the enemy loses sight of the player, then go back to idle

So, by controlling the input, we know how the enemy will behave, and this is completely
configurable within the controller without any complex scripting.

Encountering Enemies and Running Away

[261]

Sensors
Using the Mecanim state machine in this way is very powerful and just having scripts
update the parameters of the state machine through input (user taps a key, or scene loads) is
simple enough. However, if you want reactive AI, you might want to think about sensors.

Sensors are effectively the AI's eyes and ears and whatever else it wants to use to detect
action within a scene (even if it's an alarm or trip wire). Generally, they are self-contained
components that look after themselves and inform whatever they are attached to. They can
be as complex or as simple as you need them to be.

A basic sensor might be an empty GameObject with a trigger collider (the trip wire), which
tells the enemy state machine that the player has come into view. Alternatively, you could
use ray casting (yes, even in 2D) to check whether the target is in view.

One of the best examples of a sensor I've seen is a wandering GameObject with a sphere
trigger that wanders round the screen to represent the point where the enemy was looking
at. If it falls on the player or an object that has been moved in the scene, then all hell breaks
loose.

Setting up your battle scene
As you would expect, we need to create a new scene for our battles. You may want to create
several scenes for different battle areas or you may want to define one generic scene and
randomize the contents of that scene to add variation. Obviously, there are pros and cons to
each approach, but ultimately the choice is up to you.

Building the new scene
For now, we will keep things simple and just create a new scene and then configure it as our
battle area. If you have not already made the scene called BattleScene in Chapter 2,
Building Your Project and Character, do so now.

Make it look pretty with some additional background scene elements. I have added the
ForestBackground.png image to the background with an X and Y scale set to 1.5 to
better fit the camera, as shown in the following screenshot:

Encountering Enemies and Running Away

[262]

I also imported the ForestForegroundElements.png image in Multiple Sprite mode. I
sliced it by hand so that the grass was in one long sprite and the bushes were in two
separate sprites, like so:

I placed these items in the scene with an X and Y scale set to 1.5 and their alpha values set
to 168 so that they were semi-transparent, as shown in the following screen shot:

Encountering Enemies and Running Away

[263]

Notice that I lined everything up with the bottom of the camera.

Remember to group your additional environmental assets under a single
empty GameObject to keep them tidy in the Project Hierarchy. Also, set
the sprite layer and order appropriately for all elements, including the
background texture.

If you're having trouble getting your background and foreground objects
to display in the correct order, don't forget about sprite sorting layers and
sorting order!

Adding the first enemy
We need to create a prefab for our first enemy. Doing so is simple. First, let's start with the
Dragon character in the asset pack (dragon.png):

Split its sprite up using the Automatic Sprite Editor.1.
Drag sprite image dragon_0 on to the scene .2.
Rename the new GameObject Dragon.3.
Set its Sprite Sorting Layer to Middleground.4.
Change its X and Y scale to 0.5.5.
Set its X and Y position to 0.6.

The enemy should look like this:

Encountering Enemies and Running Away

[264]

I created the sprite sheet for the Dragon by combining Flappy Dragon
sprite sheets provided by bevouliin on OpenGameArt.Org found at h t t p :

/ / o p e n g a m e a r t . o r g / c o n t e n t / f l a p p y - d r a g o n - s p r i t e - s h e e t s. If you are
interested in more enemy sprite sheets, check out the other resources
provided by bevouliin at h t t p : / / o p e n g a m e a r t . o r g / u s e r s / b e v o u l i i n.

With the enemy in place, it's time to give the nasty little fellow some logic; we won't use this
just yet in this chapter, but it's good to have it from the beginning (see Chapter 10, The
Battle Begins, for the applied AI).

Create a new animator controller called DragonAI.controller by right-clicking in your
Assets\Animation\Controllers folder and selecting Create | Animator Controller.

Double-clicking on the new controller brings up the basic Animator view, as shown in the
following screenshot:

http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/content/flappy-dragon-sprite-sheets
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin
http://opengameart.org/users/bevouliin

Encountering Enemies and Running Away

[265]

Next, we need some parameters to control the state machine, so add the following
parameters to the controller by clicking on the + symbol on the parameters bar and selecting
the correct data type, as shown in the following screenshot:

The parameters to be added and their data types are as follows:

EnemiesInBattle: Int
PlayerHealth: Int
EnemyHealth: Int
PlayerSeen: Bool
PlayerAttacking: Bool

Now that we have some input parameters, we need our states. So, create the states shown in
the following screenshot on the current animation layer by right-clicking within the
window and navigating to Create State | Empty:

Encountering Enemies and Running Away

[266]

The states to be added are as follows:

Idle
Run Away
Attack
Defend

You should note that the first state will be colored orange, whereas the rest
are colored gray. This is simply because the first one you create becomes
the default state (the state the state machine will start with). You can
change the default state at any time by right-clicking on it and selecting
Set As Default.

With the parameters and states in place, all that is left is to connect everything up and
finalize the state machine. So, as we did in Chapter 3, Getting Animated, we need to create
some transitions between the states along with the conditions for those transitions, as
shown in the following screenshot:

As seen in the preceding screenshot, the states and their transitions are as follows:

Idle -> Attack – PlayerSeen = true

Dragon attacks the player when she sees him

Idle -> Defend – PlayerSeen = true and PlayerAttacking = true

If the player attacks first when they are seen by the Dragon, then defend

Encountering Enemies and Running Away

[267]

Attack -> Defend – PlayerAttacking = true

Switch to defend if the player attacks

Defend -> Attack – PlayerAttacking = false

As soon as the player stops attacking, switch back to attack

Any State -> Idle – PlayerSeen = false

If the Dragon loses sight of the player at any time, go back to idle

Any State -> Run Away – EnemyHealth < 2 and PlayerHealth > 2

The Dragon is basically a coward; if at any time its health drops too low and
the player is a lot healthier, then it will fly away as fast as its little wings will
take it

Now that we have an AI state machine for our Dragon, select the Dragon GameObject in
the Scene Hierarchy and add a new Animator Component in the Inspector menu by
dragging the newly created animator to it, which should now look like the following
screenshot:

Encountering Enemies and Running Away

[268]

Now that we have our Dragon set up, we just need to create a prefab from it. So, drag the
Dragon GameObject from the Scene Hierarchy and place it in the
Assets\Prefabs\Characters folder. You can now delete the original in the scene as we
don't need it anymore.

If you ever need to change or add to a prefab, you can do this at any time
by selecting the prefab and updating it in the Inspector menu. This will
automatically update any scene object created from the prefab. However,
if you add the prefab to the scene and then change it, the changes you
make will only be for that instance in the scene and will not update the
prefab.

As noted previously, you can also update the prefab from the instance by
clicking on the Apply button.

Spawning the Dragons
Now that we have our Dragon enemy, we need to be able to randomly drop some Dragons
into the battle. For this, we need to set up some spawning points (because we don't want
them to appear just anywhere) and a script to manage them.

First, create a new empty GameObject in the scene and call it SpawnPoints. Position it at
(0,0,0). This is just a container to keep the spawn points all together. Create an empty child
object of the SpawnPoints GameObject by right-clicking on SpawnPoints in the Hierarchy
and selecting Create Empty. Rename it Spawn1. Change its display icon to the blue
diamond, as shown in the following screenshot:

Encountering Enemies and Running Away

[269]

Duplicate this object eight times (by pressing Ctrl + D) so that you have a total of nine
children of SpawnPoints. Now name them Spawn1, Spawn2, and so on, as shown in the
following screenshot:

Now, position each spawn point in the scene where you want a Dragon to appear.

While doing this, I find that adding the prefab manually to each spawn
point and then positioning it makes it a lot easier to find the right spot.
However, remember that the order in which you add them to the scene is
important as it affects what order they are drawn in.

After a bit of tinkering, I ended up with the following (I also added the Protagonist_4
sprite for effect):

The spawn point markers

Encountering Enemies and Running Away

[270]

The following screenshot is an example scene where all nine Dragons have spawned in:

An example scene where all nine Dragons have spawned in

If you added prefabs of the Dragons to each of your spawn points to help
with position the points correctly, don't forget to delete the Dragons from
the scene at this point.

Now that we know where the Dragons are going to appear, we just need to get them there,
so we'll manage this with a BattleManager script.

The purpose of this script is to manage the life cycle of the battle scene—from setting up the
battle scene, to taking turns to attack, and to finalizing the battle once complete.

We start off by creating a new BattleManager C# script and placing it in the Scripts
folder along with the other managers (if you wish, you can create a separate Managers
folder and organize them there). As this script only works when we are in a battle, there is
no need to make it a singleton. Battles come and go and they should only last for the length
of the current battle.

For now, we will just set up the framework for the battle scene and get it
populated. Our poor hero has no chance to defend herself yet, so we'll just
let her run away.

Encountering Enemies and Running Away

[271]

First, we'll add some variables that we can configure from the scene using the following
code:

public GameObject[] EnemySpawnPoints;
public GameObject[] EnemyPrefabs;
public AnimationCurve SpawnAnimationCurve;

The lines in the preceding code maintain the spawn points the battle manager knows about,
the possible enemy prefabs it can spawn into the scene, and a curve that we can use later to
control how we animate the Dragons. We'll set up the animation curve shortly.

Next, we have some control variables to manage the battle as it ensues. This is done using
the following code:

private int enemyCount;
enum BattlePhase
{
 PlayerAttack,
 EnemyAttack
}
private BattlePhase phase;

These states are only temporary. In Chapter 9, Getting Ready to Fight, and
Chapter 10, The Battle Begins, we will build on this for a more full-fledged
system using Mecanim.

We keep a count of how many enemies are active in the scene as well as what phase the
battle is in at the moment (along with our own enumeration of the states the battle can be
in; you can always add more). Finally, we have a flag to monitor whether the enemy
characters have actually started fighting.

Now when the script runs, it needs to initialize the battle arena; so add the following code
to the Start method:

void Start () {
 // Calculate how many enemies
 enemyCount = Random.Range(1, EnemySpawnPoints.Length);
 // Spawn the enemies in
 StartCoroutine(SpawnEnemies());
 // Set the beginning battle phase
 phase = BattlePhase.PlayerAttack;
}

Encountering Enemies and Running Away

[272]

Keeping things simple for now, we generate a random number of Dragons who will attack
(or be found wandering around the wood waiting to be chopped). Then, we spawn them in
using a coroutine and start the battle with the player going first.

Since we simply need a fixed random number and we are only doing it at
the beginning of the scene, we are just using the Unity Random function. If
we needed a more complex random selection or more frequent selection,
we would change this to something more complex or preloaded.

Now that we know how many Dragons we need in the battle, we can spawn them in. I've
used a coroutine here so we can animate them one by one as follows:

IEnumerator SpawnEnemies()
{
 // Spawn enemies in over time
 for (int i = 0; i < enemyCount; i++)
 {
 var newEnemy =
 (GameObject)Instantiate(EnemyPrefabs[0]);
 newEnemy.transform.position = new Vector3(10, -1, 0);

 yield return StartCoroutine(
 MoveCharacterToPoint(
 EnemySpawnPoints[i], newEnemy));
 newEnemy.transform.parent =
 EnemySpawnPoints[i].transform;
 }
}

Here, we loop through how many Dragons we'll need, create a new instance using the
prefab we created earlier, set its position off screen, and then animate it on to the screen
using yet another coroutine (shown in the following code). When the coroutine finishes
animating, we anchor it to the spawn point it was meant for.

I put the Enemy prefabs into an array so we can support multiple types of
enemies in the battle.

So that the Dragons don't just appear at their spawn points, but rather move in to their
spawn points, we use the AnimationCurve parameter we added to the script and a co-
routine. This will move the Dragon from off-screen to its intended spawn point with the
following code:

IEnumerator MoveCharacterToPoint(GameObject destination,
GameObject character)

Encountering Enemies and Running Away

[273]

{
 float timer = 0f;
 var StartPosition = character.transform.position;
 if (SpawnAnimationCurve.length > 0)
 {
 while (timer < SpawnAnimationCurve.keys[
 SpawnAnimationCurve.length - 1].time)
 {
 character.transform.position =
 Vector3.Lerp(StartPosition,
 destination.transform.position,
 SpawnAnimationCurve.Evaluate(timer));

 timer += Time.deltaTime;
 yield return new WaitForEndOfFrame();
 }
 }
 else
 {
 character.transform.position =
 destination.transform.position;
 }
}

In the preceding code, we work out where the GameObject is starting from and then use a
while loop to keep the GameObject moving until it finally reaches its destination.
However, to improve things, we will base the loop on the length of the AnimationCurve
parameter we have defined for this transition.

This allows greater flexibility and allows us to have more complex and longer animations as
follows:

First we check whether there are animation steps (keys) within AnimationCurve
(if you want something to just pop in to place, then don't configure a curve)
If there are keys in the animation, then we keep iterating until we reach the last
key in the animation based on the time of that step and our current iteration time

Then, within the loop, we use Lerp for the position of the object from start to finish using
the animation curve to control its time and rate.

We only go to the next animation step when the next frame is ready (using
the WaitForEndOfFrame function), else the animation would happen all
at once; so we do it gradually each frame.

Encountering Enemies and Running Away

[274]

You could use yield return null; however, this happens
indeterminately and could cause the coroutine to be called several times
per frame depending on how long the last render/draw took. Since this is a
smooth animation, we need to process it for each frame. If it is another
operation that just needs controlled cycles/iterations, returning null may
be preferred.

Creating the BattleManager
Now we need to create an object in the scene on which the BattleManager script will be
attached. Add a new empty GameObject to the battle scene, name it BattleManager, and
then attach the new script to it. The following screenshot shows the script with the
EnemySpawnPoints and EnemyPrefabs arrays expanded:

Once the script is attached to the empty GameObject, it is time to add the spawn points we
created earlier to EnemySpawnPoints, the Dragon prefab to the EnemyPrefabs parameter,
and the Spawn Animation Curve. You'll notice the two arrays are empty and there is
currently just an empty gray box for the SpawnAnimationCurve.

Encountering Enemies and Running Away

[275]

Let's start by adding the spawn points we created earlier to the EnemySpawnPoints array.
This is achieved by dragging the individual spawn points from the Hierarchy over the
words, Enemy Spawn Points. Once you have dragged all nine spawn points to the array,
you should see the following:

Now, from the Project view, drag the Dragon prefab over the words Enemy Prefabs. Even
though we only have one type of enemy right now, an array was used so that multiple
enemies could be added. You should see the following:

Encountering Enemies and Running Away

[276]

The last thing we are going to do is set up the animation curve. If you click on the gray box,
the Curve window should pop up. Select the last curve option, as shown in the following
screenshot:

Now that you have everything set up, your BattleManager script should appear as
follows:

Encountering Enemies and Running Away

[277]

Allowing the player to run away
To start with, we are only going to give the player the option to run away. We will achieve
this by adding a button to the scene and then creating code that will execute when that
button is pressed.

To make the button, select Create | UI | Button. Then, set its anchor and pivot point to the
top-left corner. You'll notice that a text object is a child of the button object. Change the
Text property to say Run Away. Your Game view should now look like the following:

Add a CanvasGroup component to the Canvas so that we can adjust its interactivity and
visibility later. For now, set the alpha to 0, and deselect Interactable and Blocks Raycasts.
The button should now longer be visible in your game view.

Remember, we used a CanvasGroup component on the dialog box in
Chapter 6, NPCs and Interactions.

We now need to write some logic for this button to follow. We want this button to only be
visible during the player's battle phase and we want it to have the player return to the
Overworld scene.

Encountering Enemies and Running Away

[278]

Return to your BattleMananger script and add the following to the top of the script:

using UnityEngine.UI;

The preceding line of code will allow us to have a variable related to a CanvasGroup.

Add the following variable declaration:

public CanvasGroup theButtons;

Now add the following code:

void Update(){
 if (phase == BattlePhase.PlayerAttack){
 theButtons.alpha=1;
 theButtons.interactable=true;
 theButtons.blocksRaycasts=true;
 }else{
 theButtons.alpha=0;
 theButtons.interactable=false;
 theButtons.blocksRaycasts=false;
 }
 }
 public void RunAway() {
 NavigationManager.NavigateTo("Overworld");
 }

The Update function will turn the buttons on and off depending on whether or not it is the
player's turn. The RunAway function will exit to the Overworld scene.

When you save the code, you should see a new public variable displaying in the
BattleManager Inspector. Drag and drop the Canvas in to the slot next to The Buttons, to
assign it to the CanvasGroup theButtons variable.

Currently, the RunAway function is not linked to the button we created earlier. To have this
function activate whenever the button is pressed, we need to view the Button's Inspector.
You will see at the bottom of the Button's Inspector the following:

Encountering Enemies and Running Away

[279]

This list being left empty means that nothing happens when the button is clicked. Click on
the + sign at the bottom:

In the first drop-down, select Editor and Runtime. The slot below it that says None
(Object) tells the button on which object the script it needs to look at is attached. Since our
RunAway function is on the BattleMananger object, we will drag and drop that
BattleMananger to this slot.

Once you do that, the drop-down that says No Function will now be interactable. The drop-
down will now list all public scripts that are attached to the BattleMananger. From this
drop-down, select BattleMananger | RunAway, letting the button know it needs to look at
the BattleMananger script and run the RunAway function when clicked, as shown in the
following screenshot:

Starting the battle
We have our battle scene up and running, and when the player runs away, she will return
to the Overworld. Wouldn't it be nice to also enter the battle scene? So let's add that.

We don't want the player to enter a battle when she is right on top of a town and want
different areas to have higher probabilities of encountering a battle. So, to begin with, we
will create some battle areas.

Return to the Overworld scene. Create an empty GameObject and call it BattleZones. As
always, when creating empty GameObjects that will act as a holder, set its X and Y position
to 0. Now, create an empty GameObject as a child of BattleZones and call it Zone. Add a
BoxCollider2D component to it and set IsTrigger to true. Give it a red oval icon.

Encountering Enemies and Running Away

[280]

Leave the Zone GameObject as is for now, as we will come back to it in a minute. First, we
have to write a script to attach to it.

Create a new C# script in the Scripts folder and call it RandomBattle.

We'll start by declaring some variables:

public int battleProbability;
int encounterChance=100;
public int secondsBetweenBattles;
public string battleSceneName;

Three of the preceding defined variables are set to public so that we can easily change them
for individual battle zones. The first variable, battleProbability, represents the
probability of encountering a battle within the given zone. The second variable,
encounterChance, will hold a randomly generated number. If this number is less than or
equal to battleProbability, a battle will occur.

The third variable, secondsBetweenBattles, will determine how much time will pass
between each try at a battle. So, if encounterChance is assigned a random number and it is
greater than battleProbability, the amount of time designated by
secondsBetweenBattles will pass before a new random number is assigned to
encounterChance, thus, creating another attempt at battle.

The last variable, battleSceneName, will be the string name of the scene that should load.
Right now we only have one scene, but if you wanted to add multiple battle scenes, this will
allow you to easily change the scene that loads.

If you had multiple battle scenes, you could make things more interesting
by making a battleSceneName array variable and randomly selecting
between multiple scenes similar to the way we selected spawn points for
the dragons.

To be able to load scenes through code, we need to add the following to the top of our
script:

using UnityEngine.SceneManagement;

Encountering Enemies and Running Away

[281]

We are going to continually check if a battle should occur while the player is within the
specific zone. To do so, we will use OnTriggerEnter2D, OnTriggerStay2D, and
OnTriggerExit2D methods:

void OnTriggerEnter2D(Collider2D col){
 encounterChance=Random.Range(1,100);
 if(encounterChance>battleProbability){
 StartCoroutine(RecalculateChance());
 }
 }
IEnumerator RecalculateChance(){
 while (encounterChance>battleProbability){
 yield return new WaitForSeconds(secondsBetweenBattles);
 encounterChance=Random.Range(1,100);
 }
 }
 void OnTriggerStay2D(Collider2D col){
 if(encounterChance<=battleProbability){
 Debug.Log("Battle");
 SceneManager.LoadScene(battleSceneName);
 }
 }
 void OnTriggerExit2D(Collider2D col){
 encounterChance=100;
 StopCoroutine(RecalculateChance());
 }

When the player enters the zone (OnTriggerEnter2D), a random number
(encounterChance) will be generated to determine if a battle will occur. If the battle does
not occur, a random number will be generated in the RecalculateChance function. As
long as the player is within the zone (OnTriggerStay2D), battles will be continually
attempted. If a random number is successfully within the probability range, the appropriate
scene will load. Once the player exits the zone (OnTriggerExit2D), battles will no longer
be attempted until the player reenters the zone.

Now we can attach the RandomBattle script to the Zone object we created earlier. I'm
going to set the RandomBattle values, as shown in the following screenshot:

Encountering Enemies and Running Away

[282]

Now save this zone as a prefab in the Prefabs/Environments folder so that we can easily
reuse it. Do not delete the current zone from the scene; we are just going to rename it now
and change its parameters a bit so that it appears as shown in the following screenshot:

Encountering Enemies and Running Away

[283]

Let's make another zone that has a higher chance of battle. Drag the zone prefab to the
BattleZones holder to make it a new child. Rename it and changes its values, as shown in
the following screenshot:

Before this will work, we need to add BattleScene to our build settings. Now, random
battles will occur when the player walks in these zones.

Saving the map position
So, the player will pop back and forth between the overworld and battles. As the player hits
the button to run away, we see a very obvious problem: the map scene is starting afresh
back at home. This is simply because we are not tracking where the player left the previous
scene.

Encountering Enemies and Running Away

[284]

There are two ways to handle this: either we record where exactly everything is in every
scene and where the player enters and exits or we can simply track the last known position
(or possibly a mixture of the two?).

For now, let us simply implement the last known position method. To do this, we are going
to need a central place to remember everything about our game world (well, at least the
important bits we want to track), such as the player's stats, options and preferences they
have set, and where they have been in the world. Some of these will need saving for the
next time the player runs the game and some are just for the current instantiation, but we
will cover saving and loading later in Chapter 13, Putting a Bow on It.

The settings we need don't have to be part of any scene, actively tracked in the scene, or
even interact with other game components. So, we don't need a class that implements
MonoBehaviour or ScriptableObject; however, we do need it to be around all the time
and not be reloaded in every scene. For this, we need a very simple static class (we
implemented one of these earlier in Chapter 7, The World Map, with NavigationManager).

Create a new C# script in Assets\Scripts\Classes called GameState and populate it
with the following code:

using System.Collections.Generic;
using UnityEngine;

public static class GameState {

 public static Player CurrentPlayer =
 ScriptableObject.CreateInstance<Player>();
 public static Dictionary<string, Vector3> LastScenePositions = new
 Dictionary<string, Vector3>();
}

Here, we have some simple properties that do the following:

Track the player's stats
A flag to note whether the player is running home away from a battle
A dictionary to record the scenes the player has been to and the last position they
were in that scene

This was simple enough, but to avoid unnecessary code duplication, I have also added
some helper methods to the GameState class to manage and simplify the use of the
LastScenePositions dictionary (to save time later).

Encountering Enemies and Running Away

[285]

So, add the following code to the end of the GameState class:

 public static Vector3 GetLastScenePosition(string sceneName)
 {
 if (GameState.LastScenePositions.ContainsKey(sceneName))
 {
 var lastPos = GameState.LastScenePositions[sceneName];
 return lastPos;
 }
 else
 {
 return Vector3.zero;
 }
 }

 public static void SetLastScenePosition(
 string sceneName, Vector3 position)
 {
 if (GameState.LastScenePositions.ContainsKey(sceneName))
 {
 GameState.LastScenePositions[sceneName] = position;
 }
 else
 {
 GameState.LastScenePositions.Add(sceneName, position);
 }
 }

The preceding code is fairly similar but it ensures simple and effective use of any dictionary
class, checking the following:

When you request a value from the dictionary, it checks whether it exists first and
then returns it
If the value doesn't exist in the dictionary yet, it returns a default value
When you add a new value to the dictionary, it checks whether it already exists,
and if it does, then it updates the existing value
If the value does not exist when you try to add it, it just adds it to the dictionary

Dictionaries are powerful when used correctly: you can find values by
index (in this case a string) or you can find them by ID (like in arrays). You
can even loop over dictionaries with for or foreach loops.

However, depending on how you use them, they may not perform well
and can also generate garbage, so use them carefully.

For more details, see the C# article at

Encountering Enemies and Running Away

[286]

http://blogs.msdn.com/b/shawnhar/archive/2007/07/02/twin-paths-t

o-garbage-collector-nirvana.aspx. The article is based on XNA but
rings true for any C# platform.

There are also considerations when you need to serialize the values from a
dictionary since they are handled differently on some platforms and, in
some cases, are not even supported for serialization.

With the GameState class in place, we will create a MapPosition script for the map to load
the last position if one exists, and save the last position when exiting the scene (and in any
other scene that will need the logic).

Add the following Awake method to the newly created MapPosition script:

void Awake()
{
 var lastPosition =
 GameState.GetLastScenePosition(SceneManager.GetActiveScene().name);

 if (lastPosition != Vector3.zero)
 {
 transform.position = lastPosition;
 }
}

The preceding code simply looks for a last position for the current scene, and if there is one,
it moves the player to it.

Similarly, when closing the scene, we just need to store the last position. To do so, we add
an OnDestroy method as follows and save the player's current position:

void OnDestroy()
{
 GameState.SetLastScenePosition(
 SceneManager.GetActiveScene().name, transform.position);
}

Attach the MapPosition script to the player in the Player prefab so that it updates to all
instances of the player. This will allow the player to appropriately spawn in both the town
and the overworld.

Initially, it seems like this works very well. But, as is common with programming,
sometimes you add a new feature and it breaks something else (or multiple other things).

http://blogs.msdn.com/b/shawnhar/archive/2007/07/02/twin-paths-to-garbage-collector-nirvana.aspx
http://blogs.msdn.com/b/shawnhar/archive/2007/07/02/twin-paths-to-garbage-collector-nirvana.aspx

Encountering Enemies and Running Away

[287]

Stop immediately re-entering battle
The first thing you may notice was affected by saving our map position is that since we
spawn in a battle zone, it's possible that we immediately re-enter battle. This can be fixed by
adding a new Boolean variable to the GameState script:

public static bool justExitedBattle;

We will turn this value on and off with the BattleManager and RandomBattle scripts.

Update the BattleManager script in the following way:

public void RunAway() {
 GameState.justExitedBattle=true;
 NavigationManager.NavigateTo("Overworld");
}

Update the RandomBattle script in the following way:

void OnTriggerEnter2D(Collider2D col){
 if(!GameState.justExitedBattle){
 encounterChance=Random.Range(1,100);
 if(encounterChance>battleProbability){
 StartCoroutine(RecalculateChance());
 }
 }else{
 StartCoroutine(RecalculateChance());
 GameState.justExitedBattle=false;
 }
}

Now if GameState.justExitedBattle is true, the value that checks if an encounter
happens will not be calculated until after the time between battles has elapsed.

Going back to town
Since adding in the ability to save the map positions, the game goes crazy if you try to enter
and exit the town. Now, since the player's last position is being saved, when the player exits
town, she continuously goes back and forth between the town and the overworld. This is
because when the scene loads, she is touching the collider that loads the previous scene.

Encountering Enemies and Running Away

[288]

This is a little more complicated to fix, but not by too much. The big problem is that our
colliders are being instantly triggered when the scene loads. So, we will be changing the
script associated with those colliders causing scene loads (NavigationPrompt) as well as
our GameState and MapPositions scripts.

Reopen the GameState script and add the following variable:

public static bool saveLastPosition=true;

Now reopen the MapPosition script and adjust the code as follows:

void OnDestroy(){
 if(GameState.saveLastPosition){
 GameState.SetLastScenePosition(SceneManager.GetActiveScene().name,
 transform.position);
 }
 }

The last script we need to change is the NavigationPrompt script. Add the following
variable:

public Vector3 startingPosition;

Open it and add the following to both the OnCollisionEnter2D and OnTriggerEnter2D
methods:

GameState.saveLastPosition=false;
GameState.SetLastScenePosition(SceneManager.GetActiveScene().name,
 startingPosition);

Now we're done with changing code! Essentially what these changes have done is create a
Boolean variable that tells us if we will or will not save the last game position. If we do not
save the last position, we load a specific Vector3 value instead of grabbing the player's last
position when in the scene.

For this to work appropriately, we need to adjust the parameters of the GameObjects in our
Town and Overworld scenes that have the NavigationPrompt script attached to them.

If you forget which objects in a scene have a specific script attached to
them, right-click on the script in the Project view and select Find
References in Scene.

Encountering Enemies and Running Away

[289]

In the Overworld scene, select the Town GameObject. Change the StartingPosition
values of the NavigationPrompt script to the position at which you want the player to
start. I used the following properties that place the player where she appears in the
screenshot:

In the Town scene, select the RightBorder GameObject. Change the StartingPosition
values of the NavigationPrompt script to the position you want the player to start at. I
used the following properties that place the player where she appears in the screenshot:

Encountering Enemies and Running Away

[290]

Now the player's position will be appropriately saved when entering and exiting the town.

Going further
If you are the adventurous sort, try expanding your project to add the following:

Add a few more enemy types and integrate the enemy class into the
Animate the enemy
Try putting together another battle scene and update the battle logic to pick a
random scene
Separate the random logic into its own manager class and try a few different
patterns
Increase the randomness of battles by making time between battles random as
well

Encountering Enemies and Running Away

[291]

Summary
Picking when and how often a player will enter battles is a tricky balance between fun and
engagement. Do it too often and they will get annoyed, too infrequently and they will get
bored. Also, the battles need to be achievable and challenge the player at the same time. It is
a complex paradox that, if planned wrong, can ruin your hard work. The best solution,
when all is said and done, is to get your game play tested by as many people as possible
and genuinely consider feedback, no matter how harsh.

Alongside random generation, of course, is predictive planning: if you have a story to tell,
you also need to have a framework to replay that story over a period of time, balancing
when you need a random event or picking up the next page in your book.

In this chapter, we covered random generation, what it means, and when to use it
effectively; covered some very simple uses of randomness; built a battle scene and planned
for expansion; covered basic AI concepts and State Engines; and enabled the player to run
away to fight another day.

In the next chapter, we will set up the UI for our battle system so our player can actually do
things other than run away.

9
Getting Ready to Fight

One of the hardest parts of any game development is engagement. This centers on how you
can keep the players playing the game, how the game balances out to keep them
challenged, and how to deliver enough varied content so they feel they are always
experiencing something new.

This chapter will start out by laying the main foundation for the battle system of our game.
We will create the Head-Up Display (HUD) as well as design the overall logic of the battle
system.

The following topics will be covered in this chapter:

Creating a state manager to handle the logic behind a turn-based battle system
Working with Mecanim in the code
Exploring RPG UIs
Creating the game's HUD

Setting up our battle state manager
The most unique and important part of a turn-based battle system is the turns. Controlling
the turns is incredibly important and we will need something to handle the logic behind the
actual turns for us. We'll accomplish this by creating a battle state machine.

The battle state manager
Starting back in our BattleScene, we need to create a state machine using all of Mecanim's
handy features. Although we will still only be using a fraction of the functionality with the
RPG sample, I advise you to investigate and read more about its capabilities.

Getting Ready to Fight

[293]

Navigate to the Assets\Animation\Controllers folder and create a new Animator
Controller called BattleStateMachine, then we can begin putting together the battle
state machine. The following screenshot shows you the states, transitions, and properties
that we will need:

As shown in the preceding screenshot, we have created eight states to control the flow of a
battle with two Boolean parameters to control its transition.

The transitions are defined as follows:

From Begin_Battle to Intro:

BattleReady set to true
Has Exit Time set to false (deselected)
Transition Duration set to 0

From Intro to Player_Move:

Has Exit Time set to true
Exit Time set to 0.9
Transition Duration set to 2

Getting Ready to Fight

[294]

From Player_Move to Player_Attack:

PlayerReady set to true
Has Exit Time set to false
Transition Duration set to 0

From Player_Attack to Change_Control:

PlayerReady set to false
Has Exit Time set to false
Transition Duration set to 2

From Change_Control to Enemy_Attack:

Has Exit Time set to true
Exit Time set to 0.9
Transition Duration set to 2

From Enemy_Attack to Player_Move:

BattleReady set to true
Has Exit Time set to false
Transition Duration set to 2

From Enemy_Attack to Battle_Result:

BattleReady set to false
Has Exit Time set to false
Transition Time set to 2

From Battle_Result to Battle_End:

Has Exit Time set to true
Exit Time set to 0.9
Transition Time set to 5

Getting Ready to Fight

[295]

Summing up, what we have built is a steady flow of battle, which can be summarized as
follows:

The battle begins and we show a little introductory clip to tell the player about
the battle
Once the player has control, we wait for them to finish their move
We then perform the player's attack and switch the control over to the enemy AI
If there are any enemies left, they get to attack the player (if they are not too
scared and have not run away)
If the battle continues, we switch back to the player; otherwise, we show the
battle result
We show the result for five seconds (or until the player hits a key), then finish the
battle and return the player to the world together with whatever loot and
experience gained

This is just a simple flow, which can be extended as much as you want, and as we continue,
you will see all the points where you could expand it.

With our animator state machine created, we now just need to attach it to our battle
manager so it will be available when the battle runs; the following are the steps to do this:

Open up BattleScene.1.
Select the BattleManager game object in the project Hierarchy and add an2.
Animator component to it.
Now drag the BattleStateMachine animator controller we just created into the3.
Controller property of the Animator component.

The preceding steps attached our new battle state machine to our battle engine. Now, we
just need to be able to reference the BattleStateMachine Mecanim state machine from the
BattleManager script. To do so, open up the BattleManager script in the
Assets\Scripts folder and add the following variable to the top of the class:

private Animator battleStateManager;

Then, to capture the configured Animator component in our BattleManager script, we
add the following to an Awake function placed before the Start function:

void Awake(){
 battleStateManager=GetComponent<Animator>();
 if(battleStateManager==null){
 Debug.LogError("No battleStateMachine Animator found.");
 }

Getting Ready to Fight

[296]

}

We have to assign it this way because all the functionality to integrate the
Animator Controller is built into the Animator component. We cannot
simply attach the controller directly to the BattleManager script and use
it.

Now that it's all wired up, let's start using it.

Getting to the state manager in the code
Now that we have our state manager running in Mecanim, we just need to be able to access
it from the code. However, at first glance, there is a barrier to achieving this. The reason
being that the Mecanim system uses hashes (integer ID keys for objects) not strings to
identify states within its engine (still not clear why, but for performance reasons probably).
To access the states in Mecanim, Unity provides a hashing algorithm to help you, which is
fine for one-off checks but a bit of an overhead when you need per-frame access.

You can check to see if a state's name is a specific string using the
following code:

GetCurrentAnimatorStateInfo(0).IsName("Thing you're

checking")But there is not way to store the names of the current state to
a variable.

A simple solution to this is to generate and cache all the state hashes when we start and
then use the cache to talk to the Mecanim engine.

First, let's remove the placeholder code from Chapter 8, Encountering Enemies and Running
Away, for the old enum state machine. So, remove the following code from the top of the
BattleManager script:

enum BattlePhase
{
 PlayerAttack,
 EnemyAttack
}
private BattlePhase phase;

Getting Ready to Fight

[297]

Also, remove the following line from the Start method:

phase = BattlePhase.PlayerAttack;

There is still a reference in the Update method for our buttons, but we will update that
shortly; feel free to comment it out now if you wish, but don't delete it.

Now, to begin working with our new state machine, we need a replica of the available
states we have defined in our Mecanim state machine. For this, we just need an
enumeration using the same names (you can create this either as a new C# script or simply
place it in the BattleManager class), as follows:

public enum BattleState
{
 Begin_Battle,
 Intro,
 Player_Move,
 Player_Attack,
 Change_Control,
 Enemy_Attack,
 Battle_Result,
 Battle_End
}

It may seem strange to have a duplicate of your states in the state machine
and in the code; however, at the time of writing, it is necessary. Mecanim
does not expose the names of the states outside of the engine other than
through using hashes. You can either use this approach and make it
dynamic, or extract the state hashes and store them in a dictionary for use.

Mecanim makes the managing of state machines very simple under the
hood and is extremely powerful, much better than trawling through code
every time you want to update the state machine.

Next, we need a location to cache the hashes the state machine needs and a property to keep
the current state so that we don't constantly query the engine for a hash. So, add a new
using statement to the beginning of the BattleManager class as follows:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

Getting Ready to Fight

[298]

Then, add the following variables to the top of the BattleManager class:

private Dictionary<int, BattleState> battleStateHash = new Dictionary<int,
 BattleState>();
private BattleState currentBattleState;

Finally, we just need to integrate the animator state machine we have created. So, create a
new GetAnimationStates method in the BattleManager class as follows:

void GetAnimationStates()
{
 foreach (BattleState state in (BattleState[])
 System.Enum.GetValues(typeof(BattleState)))
 {
 battleStateHash.Add(Animator.StringToHash(state.ToString()), state);
 }
}

This simply generates a hash for the corresponding animation state in Mecanim and stores
the resultant hashes in a dictionary that we can use without having to calculate them at
runtime when we need to talk to the state machine.

Sadly, there is no way at runtime to gather the information from Mecanim
as this information is only available in the editor.

You could gather the hashes from the animator and store them in a file to
avoid this, but it won't save you much.

To complete this, we just need to call the new method in the Start function of the
BattleManager script by adding the following:

GetAnimationStates();

Now that we have our states, we can use them in our running game to control both the logic
that is applied and the GUI elements that are drawn to the screen.

Now add the Update function to the BattleManager class as follows:

void Update()
{
 currentBattleState = battleStateHash[battleStateManager.
GetCurrentAnimatorStateInfo(0).shortNameHash];

 switch (currentBattleState)
 {
 case BattleState.Intro:

Getting Ready to Fight

[299]

 break;
 case BattleState.Player_Move:
 break;
 case BattleState.Player_Attack:
 break;
 case BattleState.Change_Control:
 break;
 case BattleState.Enemy_Attack:
 break;
 case BattleState.Battle_Result:
 break;
 case BattleState.Battle_End:
 break;
 default:
 break;
 }
}

The preceding code gets the current state from the animator state machine once per frame
and then sets up a choice (switch statement) for what can happen based on the current
state. (Remember, it is the state machine that decides which state follows which in the
Mecanim engine, not nasty nested if statements everywhere in code.)

Now we are going to update the functionality that turns our GUI button on and off. Update
the line of code in the Update method we wrote as follows:

if (phase == BattlePhase.PlayerAttack){

Change it so that it now reads as follows:

if (currentBattleState == BattleState.Player_Move){

This will make it so that the buttons are now only visible when it is time for the player to
perform his/her move. With these in place, we are ready to start adding in some battle logic.

Starting the battle
As it stands, the state machine is waiting at the Begin_Battle state for us to kick things
off. Obviously, we want to do this when we are ready and all the pieces on the board are in
place.

When the current Battle scene we added in Chapter 8, Encountering Enemies and Running
Away, starts, we load up the player and randomly spawn in a number of enemies into the
fray using a coroutine function called SpawnEnemies. So, only when all the Dragons are
ready and waiting to be chopped down do we want to kick things off.

Getting Ready to Fight

[300]

To tell the state machine to start the battle, we simple add the following line just after the
end of the for loop in the SpawnEnemies IEnumerator coroutine function:

battleStateManager.SetBool("BattleReady", true);

Now when everything is in place, the battle will finally begin.

Introductory animation
When the battle starts, we are going to display a little battle introductory image that states
who the player is going to be fighting against. We'll have it slide into the scene and then
slide out. The following screenshot shows the end result:

You can do all sorts of interesting stuff with this introductory animation,
such as animating the individual images, but I'll leave that up to you to
play with. Can't have all the fun now, can I?

Getting Ready to Fight

[301]

Start by creating a new Canvas and renaming it IntroCanvas so that we can distinguish it
from the canvas that will hold our buttons. At this point, since we are adding a second
canvas into the scene, we should probably rename ours something that is easier for you to
identify.

It's a matter of preference, but I like to use different canvases for different
UI elements. For example, one for the HUD, one for pause menus, one for
animations, and so on.

You can put them all on a single Canvas and use Panels and CanvasGroup
components to distinguish between them; it's really up to you.

As a child of the new IntroCanvas, create a Panel with the properties shown in the
following screenshot. Notice the Color property of the Image component is set to black
with the alpha set to about half:

Now add as a child of the Panel two UI Images and a UI Text. Name the first image
PlayerImage and set its properties as shown in the following screenshot. Be sure to check
the Preserve Aspect property:

Getting Ready to Fight

[302]

Name the second image EnemyImage and set the properties as shown in the following
screenshot:

Getting Ready to Fight

[303]

For the text, set the properties as shown in the following screenshot:

Your Panel should now appear as mine did in the image at the beginning of this section.

Now let's give this Panel its animation. With the Panel selected, select the Animation tab.
Now hit the Create button. Save the animation as IntroSlideAnimation in the
Assets/Animation/Clips folder.

Getting Ready to Fight

[304]

At the 0:00 frame, set the Panel's X position to 600, as shown in the following screenshot:

Panel moved outside of camera's view at animation frame 0:00

Now, at the 0:45 frame, set the Panel's X position to 0. Place the playhead at the 1:20 frame
and set the Panel's X position to 0, there as well, by selecting Add Key, as shown in the
following screenshot:

Create the last frame at 2:00 by setting the Panel's X position to -600.

When the Panel slides in, it does this annoying bounce thing instead of staying put. We
need to fix this by adjusting the animation curve. Select the Curves tab:

Getting Ready to Fight

[305]

When you select the Curves tab, you should see something like the following:

The reason for the bounce is the wiggle that occurs between the two center key frames. To fix
this, right-click on the two center points on the curve represented by red dots and select
Flat, as shown in the following screenshot:

Getting Ready to Fight

[306]

After you do so, the curve should be constant (flat) in the center, as shown in the following
screenshot:

The last thing we need to do to connect this to our BattleStateMananger is adjust the
properties of the Panel's Animator.

With the Panel selected, select the Animator tab. You should see something like the
following:

Getting Ready to Fight

[307]

Right now, the animation immediately plays when the scene is entered. However, since we
want this to tie in with our BattleStateManager script and only begin playing in the
Intro state, we do not want this to be the default animation.

Create an empty state within the Animator and set it as the default state. Name this state
OutOfFrame. Now make a Trigger Parameter called Intro. Set the transition between the
two states so that it has the following properties:

The last things we want to do before we move on is make it so this animation does not loop,
rename this new Animator, and place our Animator in the correct subfolder. In the project
view, select IntroSlideAnimation from the Assets/Animation/Clips folder and
deselect Loop Time. Rename the Panel Animator to VsAnimator and move it to the
Assets/Animation/Controllers folder.

Currently, the Panel is appearing right in the middle of the screen at all times, so go ahead
and set the Panel's X Position to 600, to get it out of the way.

Now we can access this animation in our BattleStateManager script.

Currently, the state machine pauses at the Intro state for a few seconds; let's have our
Panel animation pop in.

Getting Ready to Fight

[308]

Add the following variable declarations to our BattleStateManager script:

public GameObject introPanel;
Animator introPanelAnim;

And add the following to the Awake function:

introPanelAnim=introPanel.GetComponent<Animator>();

Now add the following to the case line of the Intro state in the Update function:

case BattleState.Intro:
 introPanelAnim.SetTrigger("Intro");
 break;

For this to work, we have to drag and drop the Panel into the Intro Panel slot in the
BattleManager Inspector.

As the battle is now in progress and control is being passed to the player, we need some
interaction from the user. Currently, the player can run away, but that's not terribly
interesting. We want our player to be able to fight! So, let's design a graphic user interface
that will allow her to attack those adorable, but super mean, dragons.

Efficient RPG UI overlays
Researching various designs that have been implemented in RPG games, conveying
important information such as health, stats, and other important details, is crucial to any
gameplay. If the information is too obscure, the player won't understand when they are
close to death (and should run far away) or will struggle to understand why their favorite
magic trick just isn't going as well as it should. Similarly, if you make the UI too obtrusive,
draw players' attention away too much, and obscure the real estate on the screen too much,
then the result will be the same.

This balance is hard to maintain in any game, especially in RPG games, because we want to
give as many capabilities as possible to our budding adventurer. It gets even harder once
you start adding companions and hundreds of available skills and instant use items.

Getting Ready to Fight

[309]

The adventurer's overlay
Games such as Baldur's Gate (developed by Black Isle Studios) and games from the 1980s
took the style of surrounding the player with everything at hand:

In the preceding screenshot, we see all the party members to the right, all the menu options
to the left, and quick use items/skills laid at the bottom of the screen. Although functional,
this style of design leaves only a small portion of the screen for the actual gameplay. Since
these were mostly PC titles and large screens were available, this wasn't too much of an
issue.

Today, with smartphones and 10-inch tablets being the norm, this would create a large
issue. Put simply, it doesn't scale well.

Getting Ready to Fight

[310]

A context-sensitive overlay
The developers of Fallout (developed by Interplay Entertainment) took a slightly different
approach; taking a similar style to that of Baldur's Gate, they opted for an onscreen approach
but were a bit more clever about the use of it:

In the preceding screenshot, we see a smaller overlay screen at the bottom of the screen,
taking up a lot less real estate. In this game, it was possible to change the overlay based on
what was selected, allowing the selection of a character of the player's party to be displayed
on the screen; this helped to change the details shown to that character.

Buttons were added to provide pop-up sections for skills, character attributes, and the map.

It also provided two modes, one for traveling and one for battle, each distinctly different
based on what the player would need at the time.

Getting Ready to Fight

[311]

Modern floating UI approach
A popular pattern that fits more modern titles is to use floating elements on the player's
screen, taking advantages of the improvements that Fallout implemented and extending
them much further:

Mobile games, such as Pylon (developed by Quantum Squid Interactive), follow the
standard of breaking up the important UI for the player and scaling/placing them on top of
the main gameplay's screen. With this, the player can easily see their important stats, such
as health/magic, and has easy access to actions and skills. Additionally, the map is
informative and tapping on it brings out a full screen version.

Each of these elements only becomes active when the player needs them and are
appropriately sized, so they don't get in the way too much.

Getting Ready to Fight

[312]

Balancing the need
As you can see, there are many choices as to how you can layout the important game UI;
however, every game is different, so you will need to match up what the player needs to do
against what they need to know in order to progress.

Above all, do not sacrifice the core of the gameplay at each point in the game just for a
flashy screen element, unless it adds true value to the player.

Bring on the GUI
Before we can start acting on the state machine, we first need to add something for the
player to interact with, namely the buttons to select the attacks, items, and so on.

To do this, we will add a HUD that will hold the player's health and have buttons for the
various actions. The following is a general example of the layout we will be placing the
items:

In the preceding image, the last button will not be visible if there is not action tied to it, and
the arrow button will only be visible in submenus. The UI elements are all provided on a
sprite sheet, and we will need to do some work with the layout to get them to display, as
shown in the preceding screenshot. Import the sprite sheet BattleGUI to the
Assets/Sprites/UI folder. Import it in MultipleSprite Mode and automatically slice it.

Laying out the HUD
Right now we have two Canvases, one holding our introduction animation and one holding
the Run Away button. Eventually, we will delete the Canvas holding the current button. So,
let's create a new Canvas and name it HUDCanvas. Right-click on it and create a new UI |
Panel. Rename it Background. Change its properties so that you have the blue-stripped
rectangle as the background and it is anchored at the top of the screen, as shown in the
following screenshot:

Getting Ready to Fight

[313]

To get the other pieces to line up correctly, we will actually use two more Panels that will be
children of this larger Panel. Right-click on the Background Panel and create two new
Panels. Name the first Panel HP:

And name the second Panel Bottom:

Getting Ready to Fight

[314]

We're using these two Panels to help keep all of the items that will be within these areas
contained together, as well as we use these as the holders in which we have to set our
position and pivot points.

Now let's set up the top Panel that will hold our HP information. Start by setting the
background of the HP Panel to the BattleGUI_1 image and settings its Alpha value to 256
so that it is fully opaque:

Now add, as a child of the HP Panel, a UI | Text object. Left align it, but also give it a little
padding so it is not right up against the edge:

Getting Ready to Fight

[315]

Add another UI | Text object, but put it on the right side. Later, we will get this text to
update so that it appropriately displays the player's current health and total possible health:

Now add, as a child of the HP Panel, a UI | Slider. Sliders are great for representing health
bars. Position as shown in the following screenshot and set the Value to 1:

Getting Ready to Fight

[316]

When you expand the Slider in the hierarchy, you will see that there are a few child
elements of the Slider. Go ahead and delete the Handle that is a child of the Handle Slide
Area:

Now select the Background child and set its image to the BattleGUI_2 image:

Now, for the Fill, which is a child of the Fill Area, set the image to the BattleGUI_2 image
and align it appropriately:

Now if you change the value on the Slider component, you can watch the fill image
increase and decrease.

Let's work on the Bottom Panel. We'll use a few Panels inside this to hold various buttons.
Add a Panel as a child and name it Buttons. Align and position it as shown in the
following screenshot:

Getting Ready to Fight

[317]

This Panel is simply going to hold two other Panels of the exact same size. Create another
Panel and call it Button Menu. Set its anchor and position so that it stretches both
horizontally and vertically:

Add a Layout | Horizontal Layout Group component to the Buttons Menu Panel with the
Child Alignment set to Middle Left. Add five buttons as children to this Panel and delete
the text component from the last one:

Now place the BattleGUI_5 image as the background image for the first four buttons and
the BattleGUI_4 image as the background image for the last button. Also, set the text color
for the buttons to white:

We added the layout component so that it would perfectly space all of our buttons, but we
don't want it to be a component on our object anymore. The reason is if we try to delete a
button, it will try to disburse the buttons, but we want them to be in the exact same place
even if we only have less buttons. So, remove the layout component. Now save this Panel as
a prefab in the Assets/Prefabs/UI folder so that we can easily reuse it.

Getting Ready to Fight

[318]

Rename the Panel Main Buttons, delete the last two buttons, and change the text and
button names as shown in the following screenshot:

Drag the Button Menu prefab in the Hierarchy so that it is also a child of the Buttons
Panel and rename it Attack Buttons. Also, change the buttons' text and names as shown
in the following screenshot:

Getting Ready to Fight

[319]

The last thing we want to do to set up the layout is get the status bar that will convey
directions to the player at the bottom. Create a new Panel as a child of Bottom named Text
Holder and give it the following properties:

Now add a text component as a child of the Text Holder Panel with the following
properties:

Now select all the Panels that have the whitish background displaying behind them and
change their Alpha level to 0. After you are done, you should see the following:

Getting Ready to Fight

[320]

Now that the buttons are all laid out correctly, we can start making them display at the
correct time within battle.

Displaying the correct buttons
The goal of this chapter is to have the Attack, Item, and Run buttons visible when it is the
player's move and if the Attack button is selected, have the various Attack Buttons
display on the screen. We'll also have the Run button perform appropriately.

In future chapters, we will make an item menu appear when the item button is selected, we
will have the HP display correctly, have something actually happen when you hit the
various attacks, and have information display in the status bar.

Right now, the Attack Buttons are displaying initially, but we actually want the Main
Buttons displaying. Select the Attack Buttons Panel and add a Canvas Group
component to it. Set the Alpha to 0 and deselect Interactable and Blocks Raycasts. Your
gameplay scene should now appear as follows:

Getting Ready to Fight

[321]

We want the Panel to display at all times, but we only want the buttons to display when it is
the player's turn to move. So, we want these buttons to behave similar to the way the Run
Away button is performing currently.

Instead of writing all new code for this, we will simply replace the Canvas holding the Run
Away button with the Panel holding all of the buttons in the BattleManager script. Before
we can do so, however, we need to add a Canvas Group component to the Buttons Panel.
Set the Alpha to 0 and deselect Interactable and Blocks Raycasts, as shown in the following
screenshot:

Now select the BattleManager object and drag the Buttons Panel to the the Buttons
variable in the BattleManager script. Now you can delete the old canvas that held the Run
Away button.

Getting Ready to Fight

[322]

If you have the EventSystem GameObject as a child of the canvas that
holds the Run Away button, be sure to move it before deleting the canvas.

We don't have anything that lets the Attack button access the Attack Buttons Panel, so
let's write some code that will allow that to happen. Instead of putting this code in the
BattleManager script, we are going to create a new script to hold this information. The
reason for this is we can actually reuse this code with other menus that we make
throughout the game and it will be easier to reuse it if we just make it its own script.

Create a new C# script and call it PopUpMenu. We'll write a pretty simple script that will
have one function that turns on all the Canvas Group values and another that turns them
all off:

using UnityEngine;
using System.Collections;
using UnityEngine.UI;

public class PopUpMenu : MonoBehaviour {
 public CanvasGroup popUp;

 void Awake(){
 popUp=GetComponent<CanvasGroup>();
 }
 // Use this for initialization
 public void EnableTheMenu () {
 popUp.alpha=1;
 popUp.interactable=true;
 popUp.blocksRaycasts=true;
 }
 public void DisableTheMenu () {
 popUp.alpha=0;
 popUp.interactable=false;
 popUp.blocksRaycasts=false;
 }
}

Getting Ready to Fight

[323]

Attach this script to the Attack Buttons Panel and drag the Attack Buttons Panel to
the Pop Up slot, as shown in the following screenshot:

We could have written this code to grab the Canvas Group off of the
object that it was attached to, but I felt this was more versatile for future
uses.

Now we just need to link all of the buttons up to the appropriate functions. Let's start with
the Attack button. With the Attack button (in the Main Buttons Panel) selected in the
Hierarchy, hit the + symbol in the On Click() event. Set it up so that the EnableTheMenu
function from the PopUpMenu script that is attached to the Attack Buttons Panel will run:

Getting Ready to Fight

[324]

Now let's set up the Back button to hide this Panel. With the Back button (in the Attack
Buttons Panel) selected in the Hierarchy, hit the + symbol in the On Click() event. Set it up
so that the DisableTheMenu function from the PopUpMenu script that is attached to the
Attack Buttons Panel will run:

Now when you run the game, the buttons do not appear until it is the player's turn. Once it
is the player's turn, if you select the Attack button, the list of attacks are displayed (they
don't actually do anything yet, though) and when you hit the arrow button, the original
menu is redisplayed.

The last thing we need to do is get the new Run button to perform the way the old Run
Away button did. With the Run button (in the Main Buttons Panel) selected in the
Hierarchy, hit the + symbol in the On Click() event. Set it up so that the RunAway function
from the BattleMananger script that is attached to the BattleMananger GameObject will
run:

Now we can run away again.

Now that we have our UI and state machine set up, we have prepared the backbone for our
battle system. Our poor hero still can't actually attack. However, we will implement her
attacks and the enemies' attacks in the next chapter, Chapter 10, The Battle Begins. We'll also
give the player some items to use in battle in Chapter 11, Shopping for Items.

Getting Ready to Fight

[325]

Going further
As we reach the halfway mark in the battle implementation, we can take stock of what we
have and also look forward to more things we could include at this point.

Try expanding the battle to include the following:

Add an animation that allows the Attack Buttons to roll in and out rather than
just appear
If you added other enemies in the scene, have the IntroSlideAnimation look
for the types of enemies and generate the image from code rather than just using
a static image for the dragons
Hype up the IntroSlideAnimation particle effects and other interesting
artistic elements

Summary
Getting the battle right based on the style of your game is very important as it is where the
player will spend the majority of their time. Keep the player engaged and try to make each
battle different in some way, as receptiveness is a tricky problem to solve and you don't
want to bore the player.

Think about different attacks your player can perform that possibly strengthen as the player
strengthens.

In this chapter, we covered the following:

Setting up the logic of our turn-based battle system
Working with state machines in the code
Different RPG UI overlays
Setting up the HUD of our game so that our player can do more than just run
away

In the next chapter, we will continue the battle and set out to teach those adorably vicious
dragons a lesson or two.

10
The Battle Begins

Creating a battle system is such a big endeavor, so we split ours into two chapters. In the
previous chapter, we set up the general logic of the turn-based system and designed the
HUD to allow our player to select an attack, but our player cannot actually attack any of the
enemies yet and they do not attack her. Let's allow our player and our enemies to fight each
other.

The following topics will be covered in this chapter:

What it means to battle
Planning for longevity
Enhancing the enemy AI
Particle systems in 2D

Designing an interesting battle system
Before we begin fleshing out our battle system, it is important to consider various elements
that we may want to include in our game. Designing an interesting and unique battle
system is difficult. The battle system should be challenging and engaging. The challenge can
be accomplished with enemies that level up as the player progresses or with enemies that
acquire new and unique skills. The engagement can be achieved by quirky enemies,
interesting animations, or many other ways.

There are several things you may wish to consider to include in your battle system:

Animations
Player actions
Enemy defenses and reactions

The Battle Begins

[327]

Special moves
Interactions

Each of these provides an engaging experience for the player and makes the battle feel
worthwhile. When developing an RPG, I highly recommend you play many different RPGs
and study the different ways in which the battle system has been developed. Determine
which preceding element listed is important to you and plan to include it.

Leveling up
It's important to ensure that the player feels they are achieving something as they progress.
This may be, for instance, how much gold they collect from the fallen enemies to buy
swanky new gear. It could also be about increasing the statistics or skills of the player,
enabling them to take on more powerful enemies with a wave of their wrist.

Invariably, it is a mix of all of the preceding things that makes a game stand out. In fact, in
some titles, this is the whole focus of the game; you spend lots of time planning what skills
to have or upgrade as you progress on to explore/fight.

One piece of advice I would give is to ensure that you have some sort of whole-world
experience system. You can have skills and strengths the player can use to affect the whole
game; it should be about the game experience and not just the fight. Many big RPG games
spend a lot of their development effort getting this right, but that's not to say this cannot be
applied to smaller or even episodic games.

Balancing
By far the most difficult thing to implement in any game is balancing. If done right, you will
spend over 50 percent of your development efforts testing, tweaking, retesting, and
retweaking the game.

Don't use just one focus group to test your game, but use people from all walks of life. The
more people you have test your game, the better the balance of the game will be.

Finding that sweet spot between difficulty, playability, engagement, and fun is always hard,
so do not underestimate it. Remember, just because you play the game in a certain way
doesn't mean everyone else will play in the same way.

The Battle Begins

[328]

Preparing to attack a single enemy
Following on from the previous chapter, we will continue building our battle system.

Let's begin our focus on letting the player attack a single enemy. To do this, we'll add some
variables to BattleManager to manage this.

We will also add some other elements to spruce up the battle, such as a selection circle or a
target identifier, and add a variable to set a prefab for this.

So, open the BattleManager script and add the following variables to the top of the class:

private string selectedTargetName;
private EnemyController selectedTarget;
public GameObject selectionCircle;
private bool canSelectEnemy;

bool attacking = false;

public bool CanSelectEnemy
{
 get
 {
 return canSelectEnemy;
 }
}

public int EnemyCount
{
 get
 {
 return enemyCount;
 }
}

We haven't created the EnemyController class yet, so it will show as an
error. We will add that next.

So, we have added properties to hold the selected target, a flag, and a property to track
whether we can actually select an enemy (as the player needs to select an attack first).
Additionally, we've added a variable to maintain a record of just how many enemies are left
in the battle.

The Battle Begins

[329]

Instantiating prefabs in the code requires the prefab to be in the
Resources folder, because they are associated with the asset-bundling
features.

For single objects, it's easier to attach a prefab to the editor via the
Inspector and use it from there (either on an existing class or a static editor
class).

Beefing up the enemy AI
At the moment, Dragon is just a sprite drawn on the screen with an AI system that just sits
idle in the background. So, let's expand on this and give our Dragons some muscle power.

As stated earlier, to keep the player engaged, you need to have a varied amount of enemies
in the battle and they need to be challenging enough to make the player think and apply
tactics.

The enemy profile/controller
First, we'll create a new profile for the enemies, starting off with a new enumeration for the
enemy class. Create a new C# script named EnemyClass in Assets\Scripts\Classes
and replace its contents with the following code:

public enum EnemyClass
{
 Dragon,
 Blob,
 NastyPeiceOfWork
}

I've used just a couple of examples, as we will only be using the Dragon for now. Next,
create a new Enemy class C# script in the same folder, as follows:

public class Enemy : Entity
{

 public EnemyClass Class;
}

The preceding code just extends the base Entity class for our enemies and adds the
EnemyClass enumeration we just created.

The Battle Begins

[330]

Now that we have a profile for the enemy, we need a controller to make the enemy perform
actions in a controlled way. So, create another C# script named EnemyController in
Assets\Scripts, starting with the following variables:

using System.Collections;
using UnityEngine;

public class EnemyController : MonoBehaviour {

 private BattleManager battleManager;
 public Enemy EnemyProfile;
 Animator enemyAI;

 public BattleManager BattleManager
 {
 get
 {
 return battleManager;
 }
 set
 {
 battleManager = value;
 }
 }
}

The preceding code gives us the missing EnemyController class that we used in the
BattleManager script with the following properties:

A tight reference to the BattleManager script, which is needed because the
enemies are directly affected by the battle as it is ensued
The enemy profile
A reference to the AI animator controller we created in Chapter 8, Encountering
Enemies and Running Away

As the AI needs information about the battle, we need to ensure that it has kept each frame
up to date. So, for this, we add an UpdateAI method and call it from the Update method to
keep the AI up to date, as follows:

void Update()
{
 UpdateAI();
}

public void UpdateAI()
{

The Battle Begins

[331]

 if (enemyAI != null && EnemyProfile != null)
 {
 enemyAI.SetInteger("EnemyHealth", EnemyProfile.health);
 enemyAI.SetInteger("PlayerHealth",
GameState.CurrentPlayer.health);
 enemyAI.SetInteger("EnemiesInBattle", battleManager.EnemyCount);
 }
}

The preceding code just sets the properties of the AI to the current values.

Next, we need to grab the reference to the AI that is currently configured against the
GameObject that will be used by the preceding UpdateAI function in the Awake method:

public void Awake()
{
 enemyAI = GetComponent<Animator>();
 if (enemyAI == null)
 {
 Debug.LogError("No AI System Found");
 }
}

There are several logging options in Unity, from the basic Log to the more detailed
LogWarning and LogError. These logging options provide us with more detail while
debugging our project, so use them wisely.

To save sanity when you are adding more content to the game, it is
worthwhile to add Debug comments, surrounding them with important
components or scripts required by an object. Using them this way does not
affect the performance and can save you hours of searching for the reason
for a crash because you forgot to add something.

However, do not use Debug.Log extensively or in the normal operation of
your game, as it kills the performance!

The Battle Begins

[332]

Updating the Dragon prefab
The following are the steps that need to be followed to update the Dragon prefab:

The Dragon prefab we created earlier now needs this new EnemyController1.
class attached to it. Select the Dragon prefab from the
Assets\Prefabs\Characters folder, click on the Add Component button in
the Inspector window, and navigate to Scripts | Enemy Controller (notice it
breaks your script's name it to two words based on your capitalization), as shown
in the following screenshot:

The Battle Begins

[333]

Once added, the updated Dragon will look like the following screenshot in the2.
Inspector window:

As you can see, we cannot currently edit the Enemy Profile tab from the editor (as this
requires a custom Inspector. Hence, we are doing it through the code. You can use a
scriptable object asset and assign it to the tab, and I've already shown you how to do this.

Setting up the enemy profile in the code
Returning back to the BattleManager script, the area where we push our Dragons into
action is in the SpawnEnemies coroutine. Now, instead of just throwing sprites at the
screen, we can add some real danger to the mix for our humble player using the following
code:

IEnumerator SpawnEnemies()

The Battle Begins

[334]

{
 //Spawn enemies in over time
 for (int i = 0; i < enemyCount; i++)
 {
 var newEnemy = (GameObject)Instantiate(EnemyPrefabs[0]);
 newEnemy.transform.position = new Vector3(10, -1, 0);
 yield return StartCoroutine(
 MoveCharacterToPoint(EnemySpawnPoints[i], newEnemy));
 newEnemy.transform.parent = EnemySpawnPoints[i].transform;

 var controller = newEnemy.GetComponent<EnemyController>();

 controller.BattleManager = this;

 var EnemyProfile = ScriptableObject.CreateInstance<Enemy>();
 EnemyProfile.Class = EnemyClass.Dragon;
 EnemyProfile.level = 1;
 EnemyProfile.damage = 1;
 EnemyProfile.health = 20;
 EnemyProfile.name = EnemyProfile.Class + " " + i.ToString();
 controller.EnemyProfile = EnemyProfile;
 }
 BattleStateManager.SetBool("BattleReady", true);
}

Now, as we loop through the number of enemies being added to the battle, we grab the
EnemyController class attached to the Dragon prefab, create a new EnemyProfile class,
give it some values, and, finally, initialize the controller with the new EnemyProfile class.

Ideally, you should change this generation to something that is a bit more structured
instead of just initializing it this way, but you should get the picture.

Now that we have a stronger opponent, let's select an attack and then select the enemy we
wish to attack.

Selecting an attack
The player will select an attack and then select the enemy to perform the attack. To allow
the player to select various attacks from the HUD, we will create a new script called Attack
in the Assets/Scripts folder, as follows:

using UnityEngine;
using System.Collections;

public class Attack : MonoBehaviour {

The Battle Begins

[335]

 public bool attackSelected=false;
 public int hitAmount=0;

 public void Smack(){
 hitAmount=5;
 AttackTheEnemy();
 }

 public void Wack(){
 hitAmount=10;
 AttackTheEnemy();
 }

 public void Kick(){
 hitAmount=15;
 AttackTheEnemy();
 }

 public void Chop(){
 hitAmount=20;
 AttackTheEnemy();
 }

 public void AttackTheEnemy(){
 attackSelected=true;
 }
}

Essentially, when each button is hit, it will reference a different attack with a different hit
amount. For this to work, we will need to have each button run is specified function when
clicked. Attach this script to the BattleManager GameObject.

Now that it is attached to the BattleManager GameObject, we can easily set up the correct
buttons to run the function OnClick().

Select the first button, Smack, from the hierarchy and add a new OnClick() event. Drag the
BattleMananger GameObject in to the Object slot and select Attack | Smack from the
function list, as shown in the following screenshot:

The Battle Begins

[336]

Complete the same process for the other three attack buttons, by assigning their appropriate
functions.

This doesn't really do anything in particular yet, but sets the value of the attack that will be
performed. In the Attack script, we have a function called AttackTheEnemy() that gets
called whenever one of the buttons are selected. Within it, a Boolean variable,
attackSelected, is set to true. This value will be used to turn on and off the player's
ability to actually select an enemy to perform the attack. We will utilize this variable soon
when we set up the player's ability to select an enemy.

Adding a visual effect to attack selection
Now that we can select the attack, we want to provide some sort of feedback to the player to
let him or her know what attack is currently selected. We'll do this by adding an outline to
the button that represents the current attack.

The Battle Begins

[337]

For each of the attack buttons, add an Outline component to the button's Inspector. You can
do this all at once by selecting all of the buttons.

To select all of the buttons, click on the first one in the Hierarchy, and then while holding
down Shift click on the last one.

Make sure you do not select the Back button and only select the ones that designate attacks.
With all attack buttons selected in the Hierarchy, select Add Component | UI | Effects |
Outline, as shown in the following screenshot:

Instead of navigating through the Add Component menus, you can also
just type Outline in the search bar after selecting Add Component.

Now that the Outline component has been added, change the Effect Distance to 2 and -2,
as shown in the following screenshot:

The Battle Begins

[338]

Now disable the Outline component from each button by deselecting the check box next to
Outline (Script).

Now, update the Attack script by including the following using statement:

using UnityEngine.UI;

And add the following variable declarations:

public Button smack;
public Button wack;
public Button kick;
public Button chop;

Now create the following function:

void HighlightTheButton(){
 if(hitAmount==5){
 smack.GetComponent<Outline>().enabled=true;
 }else{
 smack.GetComponent<Outline>().enabled=false;
 }

 if(hitAmount==10){
 wack.GetComponent<Outline>().enabled=true;
 }else{
 wack.GetComponent<Outline>().enabled=false;
 }

 if(hitAmount==15){
 kick.GetComponent<Outline>().enabled=true;
 }else{
 kick.GetComponent<Outline>().enabled=false;
 }

 if(hitAmount==20){
 chop.GetComponent<Outline>().enabled=true;
 }else{
 chop.GetComponent<Outline>().enabled=false;
 }
}

Lastly, add the following line to each of the attack functions:

HighlightTheButton();

The Battle Begins

[339]

The preceding code will highlight or unhighlight the appropriate button based on the
current value of hitAmount. We could have used a new variable for this, but since the
hitAmount is directly tied to which button was pressed, this seemed like a quicker solution.

Before this code will work, we need to assign the correct buttons to the Attack script in the
BattleManager class' Inspector. So, drag and drop the buttons to their appropriate slots, as
shown in the following screenshot:

Now you can select the various attacks and they will remain highlighted with an outline
until you select a different attack. The following screenshot demonstrates the Wack attack
selected, because it has a thicker outline:

Selecting a target
Before we can attack an enemy, we must select which enemy to attack. When an enemy is
selected, the player needs some visual representation to confirm they have, in fact, selected
an enemy. To do this, let's add some selection logic for our enemies and a nice visual effect
in 2D. First, we'll create the prefab for this with a little animation and then get ready to
attach our BattleManager script using the variable we added earlier.

The Battle Begins

[340]

The selection circle prefab
To show the player which enemy is selected, the following circle will spin below the enemy:

So, add SelectionCircle.png to your project from the assets that accompany this title to
the Assets\Sprites\Props folder.

Next, we'll create a prefab of this sprite in our scene for later use. This simply sets up how
we want to use it visually, and since we are going to use it several times over in the scene,
using prefabs means that there will only be one instance with many copies.

Now, drag the SelectionCircle image on to the scene (if it doesn't work, you are looking
at the game view, which means that you need to switch to the Scene tab) and set the
properties, as shown in the following screenshot:

Finally, drag the object from the Scene Hierarchy into the Assets\Prefabs\Props folder
to create the prefab, ensuring its name is SelectionCircle. Then, delete the object from
the scene, as we no longer need it.

The Battle Begins

[341]

Now, in the Battle scene, in the editor, select the BattleManager GameObject in the
Hierarchy; once you do this, drag the SelectionCircle prefab on to the Selection Circle
property for the BattleManager script to attach it to the BattleManager GameObject.

Adding selection logic to the EnemyController
class
With everything set up in the BattleManager GameObject, we can now return to the
EnemyController script and make it so that the SelectionCircle prefab highlights a
Dragon if the player clicks on it.

First, we need a couple of properties in the EnemyController script to keep a reference to
our SelectionCircle prefab and determine whether the current enemy is selected or not.
So, add the following to the top of the EnemyController class:

 private bool selected;
 GameObject selectionCircle;

Now, to liven up the selection process a bit, let's add some spin to the selection circle when
it is on the screen. To do this, we'll add a simple coroutine to constantly update the selection
circles' rotation transform (simple and effective). We could have used the 2D animation
system to do the same thing, but it's a bit too much for a simple rotation (unless you want to
do more fancy things with the selection circle, such as add particles, have the circle jump up
and down while spinning, and so on).

So, in the EnemyController script, add the following coroutine function:

IEnumerator SpinObject(GameObject target)
{
 while (true)
 {
 target.transform.Rotate(0, 0, 180 * Time.deltaTime);
 yield return null;
 }
}

Nothing fancy; you just need to rotate the object on its z axis over time.

If you want the circle to spin faster or slower, just alter the amount of z axis rotation you
apply. Here, I have it set to spin 180 degrees every second, one full spin every 2 seconds.

Next, when the player clicks on a Dragon, we use the combination of the BoxCollider2D
and OnMouseDown functions to select the Dragon and display the selection circle.

The Battle Begins

[342]

Add a new BoxCollider2D component to the Dragon prefab and then add the following
function to the EnemyController script:

 void OnMouseDown()
 {
 if (battleManager.CanSelectEnemy)
 {
 selectionCircle =
(GameObject)GameObject.Instantiate(battleManager.selectionCircle);
 selectionCircle.transform.parent = transform;
 selectionCircle.transform.localPosition = new Vector3 (0f,-1f,
0f);
 selectionCircle.transform.localScale = new Vector3 (4f, 4f,
1f);
 StartCoroutine("SpinObject", selectionCircle);
 battleManager.SelectEnemy(this, EnemyProfile.name);
 GetComponent<Attack>().attackSelected=false;
 battleManager.battleStateManager.SetBool("PlayerReady",true);
 }
 }

Now, once an enemy is selected, the selection circle should appear below it with the
following logic:

Create a clone of the SelectionCircle prefab.1.
Set its parent to the selected Dragon.2.
Set its local position so that it is just below the Dragon.3.
Make it appear a bit bigger.4.
Start SelectionCircle, spinning with its coroutine.5.
Tell the BattleManager GameObject that we have selected a target to destroy.6.
Reset the attackSelected Boolean in the Attack script so that the next round7.
will perform properly.
Change the state of the battle so that the attack will now be performed.8.

The SelectedEnemy() function don't exist on the BattleManager script
yet, so we will return to those shortly. So, you will see this function
highlighted red within MonoDevelop and also get an error message in the
console.

We are done with the EnemyController script now.

The Battle Begins

[343]

To finish off the selection logic, let's return to the BattleManager script and add the two
missing functions as follows:

public void SelectEnemy(EnemyController enemy, string name)
{
 selectedTarget = enemy;
 selectedTargetName = name;
}

The preceding function is pretty simple. It sets the two variables we created earlier for the
selectedTarget and selectedTargetName and gets the EnemyController component
for the selected target.

However, we still can't select the enemy to attack yet, as our BattleManager script does
not let us do it. Since we want to control the flow of what the player does, we do not enable
this until they have first selected an attack.

To enable you to select an enemy and then progress on to the battle, we need to update the
case BattleState.Player_Move as follows:

case BattleState.Player_Move:
 if (GetComponent<Attack>().attackSelected==true){
 canSelectEnemy=true;
 }
 break;

You'll notice that even though the game has changed over to the next state, you can still
click on the enemies and add selection circles under them. So, to fix this, update the case
BattleState.Player_Attack as follows:

case BattleState.Player_Attack:
 canSelectEnemy=false;
 break;

Now the battle can ensue. The player selects an attack and a target, and the battle moves on
to the next phase. In this new phase, the player can no longer select attacks or enemies and
will not be able to do so again until it is their turn.

Now, when you run the project, the flow of the battle will be as follows:

The battle begins.1.
The introduction is played, informing the player of the battle.2.
The player can select from a list of attacks.3.
When an attack is selected, the attack is highlighted by an outline.4.
The player is asked to select a target.5.

The Battle Begins

[344]

The selected enemy gets the red ring of death circling their feet, and they6.
probably get a sense of foreboding.
The Battle state manager gets informed that the player has completed his/her7.
move and is ready by setting the PlayerReady property in the state machine to
true.

So, when you run the project, your scene should look like the following with the player no
longer being able to select anything:

Attack! Attack!
Now that the player has committed themselves into the fray, we can play through their
selected action.

The attack phase will simply run for 1 second and then it will be the enemies' turn. To
accomplish this, we use a simple coroutine to perform the attack itself. So, let's add the
following function to the BattleManager script:

IEnumerator AttackTarget(){
 attacking=true;
 selectedTarget.EnemyProfile.health-=GetComponent<Attack>().hitAmount;
 yield return new WaitForSeconds(1);

The Battle Begins

[345]

 attacking=false;
 GetComponent<Attack>().hitAmount=0;
 battleStateManager.SetBool("PlayerReady", false);

}

The following is what the preceding code is doing:

Sets a variable that states the player is attacking.1.
Decreases the selected enemy's health based on the chosen attack.2.
Waits for 1 second to reset the values.3.
Changes over to the next state.4.

All that is left is to call this function now when the Player_Attack state is begun. In the
Update function, update the case BattleState.Player_Attack section as follows:

case BattleState.Player_Attack:
 canSelectEnemy=false;
 if(!attacking){
 StartCoroutine(AttackTarget());
 }
 break;

Now that the attack has commenced and no doubt some Dragons were at least hurt in the
ensuing battle, let us provide the player with some visual feedback.

Using particle effects to represent an attack
The player has made his or her move, and the Dragon has been affected in some way; it
would be nice to see what happened. We'll use a different particle effect to represent each of
the attacks.

Creating the materials for the particle effects
Add the attacks.png sprite sheet and the smokeCloud.png sprite to the
Assets\Sprites\FX folder. Change its settings so that it is a multiple sprite sheet and slice
it automatically.

The Battle Begins

[346]

For particle effects to work, they need a material defined, not just the raw texture/sprite
itself. So, navigate to Assets\Materials (create it if you haven't done so already) and
right-click on it to create a new material and name it Attacks.

Change the Shader material used to the Particles/Vertex Lit Blended shader. You can
change the Shader by clicking on the drop-down menu next to the Shader property of the
Attacks material and then navigate to Particles | Vertex Lit Blended.

Next, change the Emissive Color to White. Lastly, click on the Select button on the material
properties in the Inspector window for the new Attacks material and select the
attacks.png image we just imported.

Your material should now look like the following screenshot:

Repeat the preceding steps to create a material for the smokeCloud.png sprite.

Adding the particles
Let's make our participle system. In the Hierarchy, select Create | Particle System. Change
its transform position to 0,0,0. The particles will initially appear behind the 2D objects, as
shown in the following screenshot, but this is an easy fix:

The Battle Begins

[347]

Expand the Renderer setting of the particle system and change the Sorting Layer to
Foreground, as shown in the following screenshot:

It will now display correctly in the Scene view and the Game view. The following is a
screenshot of the Game view:

The Battle Begins

[348]

This used to be not so easy to fix as the only way to change the particle's
sorting layer was through code.

Rename the particle system Smack and change its material to the Attacks material by
dragging the Attacks material to the Material slot within the Renderer options, as shown
in the following screenshot:

The Battle Begins

[349]

This initially is going to seem like a bad choice, because all of the images will now display
and we only want the first image to display, as shown in the following screenshot:

But, check and expand the Texture Sheet Animation property. Change the values, as
shown in the following screenshot:

Texture Sheet Animation properties for the Smack attack

The Battle Begins

[350]

To get the 1 in Frame over Time, select Constant from the drop-down menu. You should
now see the following:

The Battle Begins

[351]

To get the correct shape, we now need to update the other properties, as shown in the
following screenshot:

The Battle Begins

[352]

The hands should now be concentrated to a single area, as shown in the following
screenshot:

The Battle Begins

[353]

Now, duplicate this particle system (Ctrl + D) in the Hierarchy and rename it Smoke.
Deselect the Texture Sheet Animation property and change the Renderer | Material to
Smoke. All other properties will remain the same, as shown in the following screenshot:

Now we will group these two particles together by creating an empty GameObject to hold
them. In the Hierarchy, select Create | Create Empty. Position it at 0,0,0 and rename it
Smack and Smoke. Now, drag the two new particle systems to Smack and Smoke so that
they are children of the empty GameObject.

Duplicate Smack and Smoke three times and rename the other three Wack and Smoke,
Kick and Smoke, and Chop and Smoke. Rename the first particle system within each
appropriately. Now to get each to display the correct image for the attack material, change
the Texture Sheet Animation | Row value. The following screenshot shows the properties
for Wack and Smoke:

The Battle Begins

[354]

The following screenshot shows the properties for Kick and Smoke:

The Battle Begins

[355]

The following screenshot shows the properties for Chop and Smoke:

Now drag Smack and Smoke, Wack and Smoke, Kick and Smoke, and Chop and
Smoke into the Assets/Prefabs/FX folder, as shown in the following screenshot:

The Battle Begins

[356]

You can now delete the particle systems from the scene.

Displaying the particles upon attack
Now we will update our BattleManager script to instantiate these particle systems when
the attack is performed.

Add the following variable declarations to the top of your BattleManager script:

public GameObject smackParticle;
public GameObject wackParticle;
public GameObject kickParticle;
public GameObject chopParticle;
private GameObject attackParticle;

Now, update your AttackTarget() function to appear as follows:

IEnumerator AttackTarget(){
 attacking=true;
 var damageAmount=GetComponent<Attack>().hitAmount;
 switch (damageAmount){
 case 5:
 attackParticle = (GameObject)GameObject.Instantiate(smackParticle);
 break;
 case 10:
 attackParticle = (GameObject)GameObject.Instantiate(wackParticle);
 break;
 case 15:
 attackParticle = (GameObject)GameObject.Instantiate(kickParticle);
 break;
 case 20:
 attackParticle = (GameObject)GameObject.Instantiate(chopParticle);
 break;
 }

 if(attackParticle!=null){
 attackParticle.transform.position=selectedTarget.transform.position;
 }

 selectedTarget.EnemyProfile.health-=damageAmount;
 yield return new WaitForSeconds(1f);
 attacking=false;
 GetComponent<Attack>().hitAmount=0;
 battleStateManager.SetBool("PlayerReady", false);
 Destroy(attackParticle);
}

The Battle Begins

[357]

This will look at the amount stored for the attack and select the correct particle system to
instantiate. It will place the particle system where the selected Dragon is located. Then it
will destroy the newly created particle system when the battle phase has changed.

The last thing we need to do is place the correct particle systems in the correct variable slot
of the BattleManager script. Drag and drop your particle systems, as shown in the
following screenshot:

Finishing up the battle
Now, you are probably thinking at this point, What about the rest of the battle? Put simply, I
leave that up to you.

You are now armed with everything you need to know to be able to complete the rest of the
battle scene. You should not just stop there, however, and you should see just how far along
you can get.

The Battle Begins

[358]

To complete the battle system, include various states using the following steps:

Destroy enemies with health less than 1.1.
Loop through the Dragons and let them attack the player; rough her up a bit.2.
Update the player's health bar to display the correct HP.3.
Check whether the battle is complete and, accordingly, either transition back to4.
the Player Move state or set the BattleReady state variable to false to
transition to the Battle Result state.
Display a UI element to summarize the battle results and grant the user some5.
reward, perhaps with some gold, after the battle has completed.
Transition back to the map when the battle is over.6.
Update the description text to tell the player what to do next or what is currently7.
happening in the battle.

The best way to learn is through re-enforcement and testing yourself.

Going further
You can add a lot of fancy elements to this battle system that could really make it shine. A
few recommendations are as follows:

Have the player and Dragons animate when attacking by moving them forward
slightly
Give the Dragons floating health bars
Give the more powerful attacks a time limit or use limit of some sort, so that the
player doesn't spam the highest level attack

Summary
This is a chapter with lots of new code, features, and tips and tricks. Hopefully, you have
learned a lot.

We covered the factors that make a battle, adding display elements to help the player know
what is happening, and working with particle effects.

In the next chapter, we will create an inventory system so that the hero can heal herself.

11
Shopping for Items

Arguably, the inventory system in any good RPG game is one of the most important
components. Depending on the style or background of your design, it may be even more
important than the story or battle system. The reason I say this is because the way in which
you design and implement your shopping and inventory system will alter how your game
is played and how quickly the player will progress through your creation.

The topics that will be covered in this chapter are as follows:

Exploring the inventory and items
Building a shop and an inventory UI layer

Why do we shop?
The motivation to buy things is strong, and we have come to expect this in almost any
game. From a simple adventure game where we just pick things up off the street that may
come in useful later, to full-fledged RPG games where the inventory is everything, this
motivation is indispensable. Even First Person Shooter (FPS) games aren't immune to this
phenomenon.

It is important to keep all of this in mind and look at the real-world when designing any
shopping/inventory system for your RPG game. The more it feels like something that
someone would do in real life, the more at home they will feel with it, and the easier they
will find to use it.

Shopping for Items

[360]

You should always be asking the following questions of yourself while designing such a
system:

How does an item add value?
Does it seem affordable?
Is it going to improve the play?
Is it desirable?
Is it better to know what the player will already have and why?
Is it single-use (consumable) or fixed (durable/non-consumable)?
Will it break or wear out over time?

A lot of this leads us beyond just what is good for the game; it leads us to what is good for
the player. Another factor that can lend weight to this is whether we are going to monetize
certain powerful items. However, we will cover this in more detail later.

The power of an item
At the core of any inventory/shopping system are the individual items themselves. They
need to be designed in a way that will not only set each item apart from every other item,
but will also ensure that they work together to benefit the player as they travel through
your world.

Items generally have their individual properties. Refer to the following table:

Item/property Description

Slot Can this only be used in a certain slot for the player or in general?

Stackable Can items, such as ammo or potions, be stacked on top of each other?

Strength or damage What is the effect on the player's health? Does it restore the player's
health (like with health potions) or damage the player's health (like
with poison)?

Defense Does the item protect the player at all, even if only a little bit?

Power Does the item have its own source of power/ammunition? Is it
limited?

Recharge rate Does the item recharge itself or not? Can it be recharged?

Size Is the item bulky and cumbersome?

Weight Is it light or heavy? Will it encumber the player and slow them down?

Shopping for Items

[361]

Storage Similar to a backpack, does it enable the player to carry more?
Negative would mean that they will carry less.

Cost What is the value of an item?

Trade-in value In some systems, the item's health will impact this.

Perks Does the item have bonuses that will also enhance the player?

Abilities Similar to perks, does the item grant a special action to the player?

Use/type Is it a weapon, armor, potion, and so on?

Category Does it have a specific category within its type?

Level Can the item be leveled up, making it stronger, or is it a fixed level?

Durable or
consumable

Is the item non-consumable, durable, purchasable, or one-time
consumable?

Rarity Is the item one of a kind, simply hard to find, or a commonplace
object?

A lot of the preceding items will just depend on the style of the game you are making; not
all will fit, but you should review each of them in turn as you design the
shopping/inventory system.

Building your shop
Once you have decided on the types of item to provide in your game, you need to start
thinking about how the player can be provided with these items. Do they need to be bought
from a shop? Are they found somewhere, and can they be sold later? Or does the player
simply throw them away once done with them and move on to the next shiny thing? In
some games, the previous item fuse with the new one to highlight a progression.

The next thing that should come to mind once you have settled on some sort of shopping
system is how the player will access it. In most RPG games, it is the traditional roadside
shop or wandering peddler. The player has to travel to a certain location in order to buy
items. In the case of some of the rarer items, they have to travel to a specific shop or a
mystic seer guarding the item in order to acquire it.

Laying out the shop's design is fairly easy, simply because it is a shop. You don't have to
worry about loads or size; it is just a storefront.

Shopping for Items

[362]

Some examples of different shop layouts are as follows:

The pattern you choose will entirely depend on the style of your game.

Some games, however, take a different approach. They make the storefront available from
anywhere in the game; it can simply be accessed through the player's inventory. Items can
be bought and sold anywhere in such games.

Shopping for Items

[363]

Laying out your inventory
Your character's layout is usually a lot more restricted as compared to that of a storefront.
However, the character's layout needs to follow the same design pattern you are using in
your game.

These systems usually fall into a couple of patterns.

Rule of 99'
Players are limited to a certain number of each item. The number can vary based on the
item (for instance, you can have only one weapon) or its effect on the player's load. As a
rule of thumb, 99 should be the maximum number. However, it's up to you how your game
will use the item to denote its maximum number.

In the Final Fantasy series of games, Rule of 99' was used throughout its inventory system,
allowing the player to carry no more than 99 potions at a time, or anything else for that
matter, as shown in the following screenshot:

Encumbrance systems
A system based on the strength, endurance, and energy of a player is a faux-style system. It
ensures that the player cannot carry more than he/she is able to; generally though, it doesn't
take into account the size of the item, just its weight. This provides a more taxing system for
the player, forcing them to only carry what they need.

Shopping for Items

[364]

Skyrim implements this system very well; it not only forces the player to manage his/her
load when looting but also focuses on leveling up the player to increase what they can
carry, as shown in the following screenshot:

Slot-based systems
A slot-based system is a variation of the preceding encumbrance system. Instead of weight,
it uses a grid system for the player's inventory and assigns a certain number of those grid
points to an item. These points relate to how bulky or awkward a particular item is going to
be. This generally limits the player more than other systems because it forces the user to
reserve enough space to carry the items they really need.

The Fallout series implement a very effective slot-based system.

Shopping for Items

[365]

It gets tricky for the player when large mission items require a lot of slots. Refer to the
following screenshot:

A mini game
Another approach is to go a step further with an inventory system and evolve it into a mini
game in itself. Generally, players don't just move things around or sort them; instead, they
start combining items within the inventory to create or craft new items or just upgrade
them. A crazy idea I saw involved turning the inventory screen into a game of Tetris with
new items being dropped; if you could place them, you would be successful.

It certainly brings a new challenge. Moreover, if the bandwidth of your game can allow it,
it's certainly another opportunity to make use of.

Shopping for Items

[366]

Real world
The most complex system to implement is a real-world or a simulated kind of inventory
pattern to use. Attempting to make a player carry things around needs to be as real as
possible. It embodies all of the preceding systems and adds rules around the need for
special belts to carry axes/swords. Hooks and backpacks have to be carefully packed. In
some games, the player carries lots of items on their belt or back; this generates noise,
making them less stealthy.

Creating a shop and inventory
As with other areas in this book, we will just keep things simple when implementing the
sample project. You can always extend or replace it later if you wish.

We will also look at two slightly different approaches: using a scene for the shop and a layer
system for the inventory.

Gathering shop assets
The shop will contain various healing items for the player to purchase. To create the shop,
we'll just create a new scene to keep things simple as we expect to enter a shop and leave it
when we are done.

I altered the assets I used to make the HUD for the battle system to create a new menu that
will be used for the shop. I also added a talk bubble, which we will use for the shopkeep to
speak to us and show us what we are buying. We'll layout the individual buttons and slots
within Unity. The following screenshot shows the buttons, bubbles, and other things that
we are going to use:

Shopping for Items

[367]

For items to show in the shop, I turned back to Kenney on OpenGamAart.Org (who made
the awesome Hexagon Pack we used for the map) and got the Generic Items set at h t t p : / /

o p e n g a m e a r t . o r g / c o n t e n t / g e n e r i c - i t e m s. Instead of using the provided sprite sheet, I
combined the .png files of the healing items I planned on using into one sprite sheet to
make it easier to sort. I also used Photoshop to add a slight drop shadow to each item so
that the items will be easier to see when implemented.

The following screenshot shows the sprite sheet containing the healing items:

This gives us a nice array of healing items. We will only use a few of these for the shop, but
the others would be great to use in the hospital.

We're also going to use the sprite sheet for the Shopkeep that we imported in Chapter 6,
NPCs and Interactions, as shown in the following screenshot:

http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items
http://opengameart.org/content/generic-items

Shopping for Items

[368]

Go ahead and import Inventory.png into the Assets/Sprites/UI folder and
healing_items.png into the Assets/Sprites/Props folder. Change their Sprite Mode
to Multiple and automatically slice them. If you did not bring the Shopkeep.png image
into the project in Chapter 6, NPCs and Interactions, import it now with a Sprite Mode of
Multiple and automatically slice it.

Building the shop scene
In Chapter 2, Building your Project and Character, we made a scene named Shop; open it to
view the blank scene.

We will build out the entire shop scene using the UI system. You should be sufficiently
versed in setting up images and panels by now to create the following in your scene:

Shopping for Items

[369]

We're now going to change the background color using the camera setting because right
now it is the generic blue, as shown in the following screenshot, and leaving it as it is just
shows that we put no thought into the scene's design:

We'll make the background color black by selecting the Main Camera in the Hierarchy and
changing the Background color to black, as shown in the following screenshot:

Shopping for Items

[370]

We need to add some text, a back button, and a buy button. Add the text and buttons, as
shown in the following screenshot:

We're just going to add a few slots for the inventory items. However, we will use a panel to
contain all of the inventory items. This will allow us to easily add more of them and even
add a scroll-bar if necessary.

Shopping for Items

[371]

Right-click on the Inventory Panel in the Hierarchy and select UI | Panel. Rename this
panel Items. Position it so that it takes up the area between the buttons and the Inventory
text, as shown in the following screenshot:

Shopping for Items

[372]

Add a UI Image as a child of the Items panel and name it Slot. Give it the properties
shown in the following screenshot:

Now add a UI Image as a child of Slot and name it Item Image. Give it the properties
shown in the following screenshot, making sure that Preserve Aspect is selected:

Shopping for Items

[373]

Lastly, add a UI Text object as a child of Slot and give it the properties shown in the
following screenshot:

Duplicate Slot three times by selecting it in the Hierarchy and hitting Ctrl + D, as shown in
the following screenshot:

Shopping for Items

[374]

All four of these slots will now appear right on top of each other. To make them line up
appropriately, we will add a Vertical Layout Group component to the Items Panel. To do
so, select the Items panel from the Hierarchy and select Add Component. Next select
Layout | Vertical Layout Group and deselect Child Force Expand Height from the Vertical
Layout Group component.

Doing this will actually mess up the alignment of the image and text objects that are
children of each of the Slots. This is because the Vertical Alignment Group has made the
slots taller and their child images are stretching appropriately. The reason why the slots
don't look taller is we selected Preserve Aspect Ratio on the slot's image, as shown in the
following screenshot:

Shopping for Items

[375]

To fix this, we will simply change the height of the Items panel. The result is shown in the
following screenshot:

Now, if we wanted to add more inventory items, all we would have to do is duplicate the
Slot again and change the height of the Items panel, and everything would automatically
align.

The last thing we are going to do to set up our scene is add some elements to the
Shopkeep's dialog bubble. In an ode to Resident Evil 4, he will ask What are you buying?
when no item is selected. Then, when an item is selected, the image of the selected item will
appear in his dialog bubble.

Shopping for Items

[376]

To achieve this, add an image as a child of the Talk Bubble and name it Item Choice
Image; make sure Preserve Aspect is selected, as shown in the following screenshot:

Shopping for Items

[377]

Now, add the following text as a child of Talk Bubble. The text should appear below the
Image in the Hierarchy and in front of the Image in the Scene, as shown in the following
screenshot:

Shopping for Items

[378]

When you have put all the GameObjects into the scene, you should have something like the
following screenshot:

We will add all of the inventory items, their names, and the Shopkeep's reference to them
through code.

With the layout in place, we need something for the screen to use. So, let's add some items.

Creating inventory items
As with the conversation items we created in Chapter 6, NPCs and Interactions, we want to
be able to simply manage items that can be used or bought in our game.

Shopping for Items

[379]

First, we need a scriptable object to describe our inventory items. So, create a new script in
Assets\Scripts\Classes named InventoryItem and populate it with the following
structure:

using UnityEngine;
using System.Collections;

public class InventoryItem : ScriptableObject
{
 public Sprite itemImage;
 public string itemName;
 public int cost;
 public int strength;
}

Note that we haven't implemented all of the properties we described
earlier, just a subset as an example. You can add more if you wish.

Now that we have our scriptable object, we need an editor script to create our inventory
items. So, create another script named InventoryItemAssetCreator in the
Assets\Scripts\Editor folder and populate it with the following structure (note that we
are again using our generic utility class to make this very easy to implement):

using UnityEngine;
using UnityEditor;

public class InventoryItemAssetCreator : MonoBehaviour {

 [MenuItem("Assets/Create/Inventory Item")]
 public static void CreateAsset()
 {
 CustomAssetUtility.CreateAsset<InventoryItem>();
 }
}

With this in place, we can now create some inventory items. Create a new folder named
Inventory Items in the Assets\Resources folder, navigate to that folder, and create
a new InventoryItem class from the Create menu (right-click on Create or use the
Project folder window's Create menu option).

Shopping for Items

[380]

With the New InventoryItem.asset created, we can configure our first item. Rename the
asset to RedCapsule and then configure its properties, as shown in the following
screenshot:

You can configure the properties using the following steps:

Set the Sprite property to the red capsule image from the healing_items Sprite1.
Sheet (healing_items_0).
Give it a name through the Item Name field.2.
Set Cost to 0 to denote it's a free item (since we don't have a monetary system3.
yet).
Set Strength to 10 so that it will heal 10 HP points.4.

Create three more InventoryItems in the same manner. I created BlueCapsule,
Bandaid, and MedPack, as shown in the following screenshot:

Shopping for Items

[381]

Managing the shop
Now that we have our shop interface and some stock we can put in it, it's time to bring
them together.

First, we need to set up a shop manager who looks after the day-to-day running of the shop,
and then we will add shelves to the shop to manage where we can put the stock.

We will create two scripts, ShopSlot and ShopManager, in this section.
The ShopSlot and ShopManager scripts will depend on each other, so we
need to create them together. Until both are complete, you will most likely
see errors; just keep this in mind as we progress.

The situation always applies when you are creating codependent classes.

First, we need the shop manager itself. To keep things neat, create a new folder named Shop
in the project's Assets\Scripts folder and then create a new script named ShopManager
in the Shop folder. This just ensures that any script related to shopping is stored here if you
want to expand it later. The manager is only used in this one scene, so we don't need to
make it a singleton.

To start off, we will just add some parameters so that we can control the shop we are
creating and set it up as follows:

using UnityEngine;
using UnityEngine.UI;

public class ShopManager : MonoBehaviour {

 public Image PurchaseItemDisplay;
 public ShopSlot[] ItemSlots;
 public InventoryItem[] ShopItems;
 private static ShopSlot SelectedShopSlot;

 private int nextSlotIndex = 0;
 public Text shopKeepertext;
}

When the player enters the shop's screen, we want to be able to display the current selection
of wares. So, when ShopManager starts, we need to configure those items as follows:

void Start () {
 if (ItemSlots.Length > 0 && ShopItems.Length > 0)
 {
 for (int i = 0; i < ShopItems.Length; i++)

Shopping for Items

[382]

 {
 if (nextSlotIndex > ItemSlots.Length) break;
 ItemSlots[nextSlotIndex].AddShopItem(ShopItems[i]);
 ItemSlots[nextSlotIndex].Manager = this;
 nextSlotIndex++;
 }
 }
}

The preceding code just loops through all the available slots in the shop and picks out items
from its inventory to place in them, ensuring we only stock as many items as the shop can
handle.

You will notice that the last function actually has an error. This is because we did not add
the actions/behaviors for the ShopSlot script. We will fix that shortly.

Next, we need some helper functions to represent the actions/behaviors that the shop is
capable of performing; first, we add the ability to select an item for purchase using the
following function:

public void SetShopSelectedItem(ShopSlot slot)
{
 SelectedShopSlot = slot;
 PurchaseItemDisplay.sprite = slot.Item.itemImage;
 shopKeeperText.text=" ";
}

Finally, we add the ability to purchase the currently selected shop item using the following
function:

public static void PurchaseSelectedItem()
{
 SelectedShopSlot.PurchaseItem();
}

Each of the preceding functions is self-contained and controls each step necessary to
perform each action. They do so by enabling or disabling screen elements, such as
PurchasingSection, to perform actions on dependent objects such as shop slots.

You will note that this last function is also set as static. This is to enable it to be accessed
from anywhere in the code without referencing it or performing GetComponent for the
ShopManager script.

Shopping for Items

[383]

As stated in the previous sections, it might seem as of you could make everything static and
avoid using GetComponent altogether. However, using statics has certain overheads and
can lead to messy and hard-to-diagnose code; this technique should not be overly used. If in
doubt, don't use it unless necessary.

With ShopManager set up, we can now create the missing definition for ShopSlot. This
will define slots in the shop that remember what is being stored on the shelf. Create a new
script in the Assets\Scripts\Shop folder and name it ShopSlot, replacing its contents
with the following code:

using UnityEngine;
using UnityEngine.UI;

public class ShopSlot : MonoBehaviour {

 public InventoryItem Item;
 public ShopManager Manager;
 Image image;
 Text name;

}

Now, to add other functions for the shop slots that will be used by the manager, add the
following functions to the ShopSlot script:

public void AddShopItem(InventoryItem item)
{
 image = transform.GetChild(0).GetComponent<Image>();

 image.sprite = item.itemImage;
 Item = item;

 name=transform.GetChild(1).GetComponent<Text>();
 name.text=item.itemName;
}

public void PurchaseItem()
{
 //We'll do some stuff here later to add it to our inventory
}

Shopping for Items

[384]

The first function enables the ability to add an inventory item to the current slot and display
it, and the second function controls how an item is purchased. Again, each function is
distinct and is just related to the task that it is to perform. Wherever possible, you should
follow this pattern, as it will make maintaining or extending your game much easier later.

Finally, we need to add one last piece of code in order to enable the player to click on items
in the shop slots; so, add the following function to the ShopSlots script:

public void ItemSelected()
{
 if (Item != null)
 {
 Manager.SetShopSelectedItem(this);
 }
}

Now that we can stock our shop and purchase items from it, we just need the ability for
users to buy items when selected, so add the following function to the ShopManager script:

 public void ConfirmPurchase(){
 PurchaseSelectedItem();
 shopKeeperText.text="Thanks!";
 }

The preceding code simply calls the static Purchasing function we created in the
ShopManager script earlier to buy an item. We will tie these last two functions to our
buttons and inventory items shortly.

Updating the player inventory definition
Now that we have a definition for InventoryItem, we can update the Player class so that
the player can carry the correct item. So, open the Player class under
Assets\Scripts\Classes and update the script to use the new InventoryItem class
instead of a string as follows:

using System.Collections.Generic;
public class Player : Entity
{
 public List<InventoryItem> Inventory = new List<InventoryItem>();
 public string[] Skills;
 public int Money;
}

Shopping for Items

[385]

Stocking the shop
With all our scripts in place, let's return to the shop scene, start applying them, and, finally,
get some stock displayed on the shelves.

So first, let's attach the following scripts:

Attach the ShopManager script to the Inventory GameObject
Attach the ShopSlot script to each Slot in the shop

Now, our shop is ready to receive its owner and some inventory items to stock. So, select
the Inventory GameObject; once you do this, you should see the following configuration
options in the Inspector pane:

I've preconfigured Shop Manager as an example. So, let's walk through the steps that are
available:

Drag the Item Choice Image to the Purchase Item Display slot.1.
Next, set the Item Slots pane's Size to 4 and attached each of the available Slots2.
in the shop by dragging them from the Hierarchy into the Inspector pane. You
can also achieve this by using the circle icon to the right of each element and
finding the Slot in the scene. Note that you cannot drag slots into this list if you
do not have the ShopSlot script attached to them.

Shopping for Items

[386]

Finally, set the Shop Items pane's Size to 4 and dragged the four Inventory3.
Items we created earlier in the Assets\Resources\InventoryItems folder
into each element of the Shop Items array. The order in which you drag them
into the array is the order in which they will appear on the screen.

If you now run the scene at this point, you should see the following:

Now we need to get the buttons working appropriately and allow the player to select the
items.

Linking up the buttons
We created all of the slots as images, but we want them to perform as buttons. So, we can
easily add a button script to each of the slots. Select all four of the slots and add
Commponent | UI | Button.

Shopping for Items

[387]

We want each of these slots to perform the ItemSelected() function that is in the
ShopSlot script attached to each of them. For each slot's Button script, set up the On
Click() event, as shown in the following screenshot:

Make sure you drag the correct Slot to each.

Now, when you select an item, it should appear in the ShopKeep's dialog bubble, as shown
in the following screenshot:

The last button we need to link up is the Buy Button. We want it to perform the
ConfirmPurchase() function within the ShopManager script. So, add the function to the
button's On Click() functionality, as shown in the following screenshot:

Now when you click the Buy Button after selecting an item, the Shopkeep will say Thanks!
over the item to affirm that it has been purchased. Soon, we'll allow this to also add the item
to our inventory.

Shopping for Items

[388]

Turning off the Buy Button
Currently, there is one big problem with our shop. If you select the Buy Button before you
select an object, an error message will appear. It doesn't break the game, but it isn't a good
idea to let error messages (even if your game continues to run) show up. The best way to
deal with this is to disable the Buy Button until after an item has been selected because,
after all, it doesn't really make sense for this button to be there if the player hasn't selected
anything.

To accomplish this, we will add a Canvas Group to our Buy Button by selecting Add
Component | Layout | Canvas Group from the Inspector.

Change the Canvas Group values as follows:

The Buy Button will now no longer be visible in the scene. Add the following variable to
the ShopSlot script:

public CanvasGroup buyButton;

And update the ItemSelected() function as follows:

public void ItemSelected()
 {
 if (Item != null)
 {
 Manager.SetShopSelectedItem(this);

 if(buyButton.alpha==0){
 buyButton.alpha=1;
 buyButton.interactable=true;
 buyButton.blocksRaycasts=true;
 }
 }
 }

Now drag the Buy Button into the Buy Button variable for each of the ShopSlot scripts
attached to the Slot, as shown in the following screenshot:

Shopping for Items

[389]

You can do this for all four slots at once by selecting all of the Slots in the
Hierarchy while holding Ctrl.

Entering the shop
We can buy items from the shop but we can't actually enter the Shop scene or leave the
Shop scene. As we did in Chapter 7, The World Map, we just need to add trigger colliders in
the Town where the user can enter the Shop. To do this, return to the Town scene.

Add a new empty GameObject named Shop as a child of the WorldBounds GameObject
(because it takes us out of the scene) and add a Box Collider 2D component (set as a
trigger), as shown in the following screenshot:

Shopping for Items

[390]

The collider just needs to be shaped or scaled enough so that our 2D character will collide
with it when she passes in front of the shop.

Attach the NavigationPrompt script to the Shop.

Trying to enter the shop isn't going to get us very far if the game doesn't know it exists, so
add the Shop scene to the project's Build Settings.

Also, update the NavigationManager script to include a new Route asset for the shop as
follows:

public static Dictionary<string, Route> RouteInformation = new
 Dictionary<string, Route>() {
 { "Overworld", new Route{RouteDescription="The big bad world",
 CanTravel=true}},
 { "Construction", new Route{RouteDescription="The construction
area",
 CanTravel=false}},
 { "Town", new Route{RouteDescription="The main town",
CanTravel=true}},
 { "Campsite", new Route{RouteDescription="The campsite",
 CanTravel=false}},
 { "Shop", new Route{RouteDescription="The town shop",
CanTravel=true}},
 };

Finally, to ensure that we navigate to the new Shop scene, we need to add a new tag named
Shop and assign it to the new Shop GameObject, as shown in the following screenshot:

After you add the Shop tag, be sure to assign it to the shop.

Shopping for Items

[391]

Leaving the shop
The hero can purchase items from the shop (she doesn't get to keep them just yet), but she is
stuck in the shop, the doors and windows are barred, and the owner has a very stern face.

To allow the hero to leave, we just need to call the NavigationManager script. Instead of
making a whole new script for this, I will just add it to the ShopMananger script.

Add the following function at the end of the ShopManager script:

public void LeaveTheShop(){
 NavigationManager.NavigateTo("Town");
}

Now just have the preceding function called from the Back button when clicked, as shown
in the following screenshot:

The hero should now be sent to the middle of town. Let's fix it so that she returns through
the front door instead of returning to the middle of town.

Using the same method we used in Chapter 8, Encountering Enemies and Running Away, to
get character to spawn in the correct location, we need to update the StartingPosition
on the NavigationPrompt script that is attached to the Shop, as shown in the following
screenshot:

Shopping for Items

[392]

Now the player will spawn in front of the shop when leaving it.

Managing your inventory
Now let's put an inventory window in our scene so that the player can view what he/she
has purchased.

In the Town scene, create a new UI Canvas and name it PopUpWindows. Add a panel named
InventoryPanel as a child of the new canvas with a width and height of 300 and give it
the Inventory_1 background image. Give it a text Title and add a Close button, as
shown in the following screenshot:

Shopping for Items

[393]

Add another panel as a child of InventoryPanel and name it InventoryList. Adjust its
size so that it only takes up the bottom portion of InventoryPanel, as shown in the
following screenshot:

Now we'll give it the ability to pop up and close in the scene by adding a new button to
access it. Add a new button to the PopUp Canvas and call it ShowInventory. Place it at the
bottom corner of the canvas, as shown in the following screenshot:

Shopping for Items

[394]

Now add a Canvas Group to the InventoryPanel. Set the Alpha to 0 and deselect
Interactable and Blocks Raycasts.

In Chapter 9, Getting Ready to Fight, we created a PopUpMenu script. Attach this to the
InventoryPanel and assign InventoryPanel to the PopUp slot.

Set up the On Click() events for the ShowInventory and Close buttons to run the
EnableTheMenu and DisableTheMenu functions from the PopUpMenu script, respectively.

Now the inventory menu should open and close appropriately.

We are going to let the inventory populate within the panel area based on what the player
purchases. We also want this to automatically display in a grid. So, add the Grid Layout
Group component to the InventoryList panel by selecting Add Component | Layout |
Grid Layout Group from the Inspector, as shown in the following screenshot:

Return the Alpha of the InventoryPanel to 1 so that you can see what you are doing, for
now.

Shopping for Items

[395]

Add a button as a child of InventoryList and delete its text component. Name this button
InventoryItemPrefab. Set its anchor and pivot to the top left corner, as show in the
following screenshot:

Save this button as a prefab and delete it from the scene.

Create a new C# script in the Assets/Scripts folder, name it PlayerIventoryDisplay,
and populate it with the following code:

using UnityEngine;
using UnityEngine.UI;

public class PlayerInventoryDisplay : MonoBehaviour{

public Button invPrefab;

Shopping for Items

[396]

 void Start() {

 foreach (var item in GameState.currentPlayer.Inventory)
 {
 Button inventoryChild = (Button)
 Instantiate(invPrefab,Vector3.zero, Quaternion.identity);
 inventoryChild.transform.parent=transform;
 inventoryChild.GetComponent<Image>().sprite=item.itemImage;
 }
 }
}

The preceding code loops through all the items in the player's inventory (if there are any)
and displays them as buttons.

Attach the preceding code to the InventoryList panel and add InventoryItemPrefab
to the Inv Prefab slot.

Adding objects to the player's inventory
Right now, if the player character is holding inventory items, they display in the inventory.
But, she doesn't actually have the ability to hold any items.

Open up the Player script under the Assets\Scripts\Classes folder and add the
following additional function:

public void AddinventoryItem(InventoryItem item){
 Inventory.Add(item);
}

Now the player character will have a list of all objects that she is holding.

Now that we have our helper function to control a player's Inventory property, we just
need to update the ShopSlot script we created earlier to use the following new function:

public void PurchaseItem()
{
 GameState.CurrentPlayer.AddinventoryItem(Item);
}

Shopping for Items

[397]

Now try playing the game and entering the shop. Buy some stuff, return to the town menu,
and view all of your fancy items, as shown in the following screenshot:

Now you have the basic inventory set up and each item is a button. You can easily have
these buttons add health to the player and remove them from the list when used. The nice
thing about using the Grid Layout Group is that the items will automatically lay out
appropriately.

There is one issue with the current layout, if you exceed the number of items that can be
held in the specified space, they will overflow the menu. You can fix this by adding a scroll
bar and also by having repeated inventory items group together.

Remember, in Chapter 9, Getting Ready to Fight, we had a button for items in our HUD.
Save the PopUp canvas as a prefab and bring it in to the Battle scene. Then link the
InventoryPanel to the Item button in the HUD the same way you did in the Town scene.
When you bring the Popup canvas prefab in to the Battle scene, be sure to delete the
ShowInventory button, as it conflicts with the button already available in the HUD.

Shopping for Items

[398]

Going further
If you are adventurous, try expanding your project to add the following features:

Add the inventory menu to the battle scene, as previously discussed.
Use a scroll bar to allow the inventory menu and shop inventory to exceed the
current view.
Group similar inventory items together by showing a single image with an item
count.
Add scripts to the inventory items to allow them to affect the player's health.
Have a go at adding money into the equation by making things cost money. In
the purchasing section, display and act on it if the player does not have enough.
Put a second view in the shop to allow the player to sell items back to the shop.

Summary
In this chapter, we added a new location for the player to visit, the shop, where the player
character was able to purchase many different items and add them to her own personal
inventory.

The next chapter discusses adding sound and music to your project.

12
Sound and Music

Our character can do lots of things now. She can shop, she can fight, she can run away, and
explore a map, but it's as if she is doing it in a soundless vacuum. Therefore, it's time to add
some sound and music to our game.

Unity has a lot of built-in functionality when it comes to audio, much of it is beyond the
scope of this book. You can mix audio, create 3D sounds, and do all sorts of fancy things
with audio within Unity. We're going to cover the basic functionality of adding sound and
music to get you started on your auditory journey.

The topics that will be covered in this chapter are as follows:

Adding background music to your game
Adding sound effects to your game
Muting and unmuting audio

Choosing the appropriate sound and music
Choosing the sound and music will likely be one of the last things you do for your game
(unless, of course, you're making a music game).

It is important that the music fits with the tone that you have set with the art and overall feel
of the game. For me, this is harder than choosing art, because I know that choosing the
wrong music could drastically bring down the appeal of my game. If the player finds your
music choice annoying, too loud, or overbearing, their experience will be far from ideal. I
recommend playing the music you chose over and over for yourself. If it annoys you after a
few loops, it will definitely annoy the player.

Sound and Music

[400]

Appropriate sound effects are also important. You want to make sure that all appropriate
actions have sound and that the sound fits the action that it accompanies. You don't want
the sound of breaking glass to accompany the action of a character sighing, for example.
Too few sound effects can make your game feel incomplete and too many (especially
triggering at the same time) can make your game seem muddled. It's also important that the
sound doesn't get too repetitive, as this will become annoying quickly.

Just remember to play-test your game with many different types of people from many
different walks of life and specifically ask them their opinion on the sound and music.
Many players will mute the sound of a game before they even hear it, so if you are testing
for sound and music, make sure the players know ahead of time.

Where to get sound and music for your
game
There are a few different options for where you can get sound and music. You can make the
audio yourself, you can hire composers, you can purchase stock audio, or you can even use
free stock audio.

If you purchase stock audio or use free stock audio, be sure to check the licensing
agreement. Purchasing audio does not automatically guarantee you unrestricted use and
sometimes, even if you pay for it, you cannot use it in a commercial game.

Free resources
If you're like me, free is probably the price range you are looking for. What follows is a list
of a few places where you can get free resources to help you design your own audio or get
pre-existing sound effects/music:

Audacity is free software and can be downloaded at h t t p : / / w w w . a u d a c i t y t e a m .

o r g /. This software can be great for recording your own sound effects and dialog.
My favorite place to get music is incompetech.com/. You can sort the music by
feel and genre and there is a huge selection of quality music available here. Make
sure that you check the licensing info on this, because the artist does require
credit when using his material.
Free sound effects are a little harder to come by. Freesound.org is a good place to
get sound effects. Each sound effect has a different license agreement, so make
sure you check that out before downloading.

http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://www.audacityteam.org/
http://incompetech.com/
http://freesound.org

Sound and Music

[401]

Always check out the Unity Asset Store when you're looking for any resource, at
h t t p s : / / w w w . a s s e t s t o r e . u n i t y 3 d . c o m. While there aren't many free assets in
terms of sound or music, there are a few and the store gets new items daily.

Audio listeners and audio sources
To have audio in your scene you need at least two objects: an audio source and an audio
listener. The audio source is the object that emits the sound and the audio listener is the
object that receives the sound.

Any object in your scene can be turned into an audio source or listener by attaching the
corresponding component to it. However, you will notice that the Main Camera always
comes with an Audio Listener component automatically added to it when a new scene is
created. The following screenshot shows the Inspector for the Main Camera from our
BattleScene:

https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com
https://www.assetstore.unity3d.com

Sound and Music

[402]

Since we will be working in a 2D game the object that we use as our audio source is not
terribly important. If we were working in a 3D game and wanted our sound to be 3D (that
is, the distance the object is away from the audio listener will affect the sound's volume),
we'd want the object actually making the sound to be the audio source.

My preference is to have two objects in my game that are carried between scenes and act as
audio sources. I use one object as the audio source for the music in the game and the other
as the audio source for all sound effects. This allows me to easily mute the sound and music
separately.

Adding background music
To begin, I grabbed the song Bit Shift by Kevin MacLeod over at incompetech.com. If you
go to the site, select Get Started with Music and you can search by mood, genre, and other
properties. You can also search for the name of the song to download the one I am using. I
chose this song because it reminds me a lot of Phantasy Star on the Sega Master System,
which is one of my all-time-favorite games. But I digress. Add whichever song you choose
to the Assets/Audio/Music folder.

We are going to just have this one song play throughout all of our scenes. This means that
we need to create an object that starts playing the music at our initial scene and then doesn't
destroy when a new scene loads. Placing this object in a scene and telling it not to destroy
when we go to new scenes works great, except for one problem; if you return back to the
initial scene, the sound will duplicate and each time you return to the scene it will add a
new instance of the song. We could accomplish this with code, but I want to show you
another way to handle it, and that's by adding a splash screen to our project.

Creating a splash screen
A splash screen is the initial screen that displays before all others in a video game. It usually
contains a logo, credits, copyright, and so on. When you build a game in Unity, a Unity
splash screen will initially play. We will customize this screen in Chapter 13, Putting a Bow
on it, but for now we will just have a blank splash screen that loads our audio sources.

The splash screen is a great place to load your objects that you want to carry on throughout
the entire game because:

Everyone sees this screen when they first start playing.1.
You never return to this screen, so items will not duplicate.2.

Sound and Music

[403]

To begin, create a new scene by navigating to the Assets/Scenes folder, right-clicking
within the folder, and selecting Create | Scene. Name this new scene SplashScreen.
Double-click on the scene to load it.

Adding the audio source
Now, within the Hierarchy, select Create | Audio | Audio Source. Position it at 0,0,0 and
rename it Music. Now, drag the song you downloaded into the AudioClip slot of the
Audio Source. Also, make sure Loop is selected in the Audio Source component. As shown
in the following screenshot:

When you play the scene, the music should immediately begin playing.

Sound and Music

[404]

Transitioning to the next scene
We are going to write two small scripts: one that automatically transitions from this scene to
the next and one that keeps the music from destroying when the next scene loads.

Before we begin writing these scripts, let's go ahead and add this scene to the Build
Settings; otherwise, none of the code we are about to write will work. When you add it to
the Build Settings, make sure it is the first scene in the list. This will cause this to be the first
scene that loads when the game begins. As shown in the following screenshot:

The first script we will write will make sure the game automatically transitions to the next
scene. As you can see from the Build Settings dialog, the next scene is the Town. Create the
following C# script in the Assets/Scripts folder and call it SplashScreen.cs:

using UnityEngine;
using System.Collections;
using UnityEngine.SceneManagement;

public class SplashScreen : MonoBehaviour {

Sound and Music

[405]

 public string sceneToLoadName;
 public int timeToLoad;

 void Start () {
 Invoke("NextScene", timeToLoad);
 }
 void NextScene () {
 SceneManager.LoadScene(sceneToLoadName);
 }
}

This code simply loads a scene by name after a specified amount of time.

To get this code to work, we need to attach it to something. We don't want to attach it to the
Music object, because that will be transferring to the next scene, so let's just add it to the
Main Camera. Give the Scene To Load Name variable the value of Town and the Time To
Load variable the value of 1. As shown in the following screenshot:

Sound and Music

[406]

Play the scene, and after one second the Town scene will load. However, the music instantly
stops playing, as it is not carried over to the Town scene.

Keeping the music after the scene transition
Now that the scene automatically transitions, let's make our music come along for the ride.

Create the following C# script in the Assets/Scripts folder and call it KeepAround.cs:

using UnityEngine;
using System.Collections;

public class KeepAround : MonoBehaviour {
 void Update (){

 DontDestroyOnLoad(gameObject);

 }
}

This script simply states: when a new scene loads, don't destroy whatever GameObject to
this script is attached to. Now attach this script to the Music GameObject.

Now, when you play the scene, the music will continue to play in the Town. It will also play
in the Shop, Overworld, and any other scene you feel like having your character travel to.

Adding sound effects
We will create another AudioSource to play all sound effects. The way in which we have
the sound effect play will be handled through code instead of having it play instantly and
continuously.

Now, within the Hierarchy, select Create | Audio | Audio Source. Position it at 0,0,0 and
rename it Sound, as shown in the following screenshot. Since we don't want a sound to play
the moment the game starts, deselect Play On Awake. Also drag and drop the
KeepAround.cs script into the Inspector:

Sound and Music

[407]

I chose to have this single audio source for my sound effects and to have it continue
through each scene to make muting and unmuting the sound easier.

To easily access the Sound GameObject through code, we will use a Tag. Select the Sound
GameObject and add the new tag Sound. As shown in the following screenshot:

Sound and Music

[408]

Adding a sound to the buy button
We can add all sorts of sounds to our game and the process will be the same throughout.
For this text, to preserve the page count, we will only add one sound. We will add a nice
coin sound that will play whenever the Buy Button in the shop is selected. I toyed with the
idea of using a sound effect that was simply me saying cha-ching, because I thought it would
be funny in a terrible way, but I decided against it. Instead, I went over to freesound.org
and got the sound of coins being shaken in a bag, found here: h t t p : / / f r e e s o u n d . o r g / p e o p

l e / D % 2 W / s o u n d s / 1 4 3 8 2 /. Place the sound in the Assets/Audio/FX folder.

Return to the Shop scene. If you recall, the functionality for the Buy Button was in the
ShopMananger script attached to the Inventory GameObject. So, open the ShopManager
script from the Assets/Scripts/Shop folder.

Create two new variables at the top of the script as follows:

GameObject soundEffectsSource;
public AudioClip buySound;

Now create a new Awake() function before the Start() function as follows:

void Awake(){
 soundEffectsSource= GameObject.FindGameObjectWithTag("Sound");
}

Now we just need to update the ConfirmPurchase() function by adding the following if
statement:

if(soundEffectsSource!=null){
soundEffectsSource.GetComponent<AudioSource>().PlayOneShot(buySound);
 }

I made the buySound a public variable so that we could easily assign it through the
Inspector. So, select Inventory from the Hierarchy, and drag the coin sound to the Buy
Sound slot in the ShopMananger, as shown in the following screenshot:

http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/
http://freesound.org/people/D%20W/sounds/140382/

Sound and Music

[409]

If we neglected to place the if(soundEffectsSource!=null){}
condition in our function, we would be unable to buy objects unless we
started playing our game at the splash screen, because we would get an
error if we tried to buy something.

Now, since our sound effect source is created on the splash screen, the only way we can
check to see if our sound effect works is by playing the game from the splash screen. Reload
the splash screen, play the game, navigate to the Shop scene, and buy something. The
sound should play whenever the Buy Button is pressed.

Having to always play from the splash screen is quite annoying when you
are testing your game. I recommend adding an audio source with the
Sound tag to each scene just for sound-testing purposes, but disabling
them before building the final version of your game.

Sound and Music

[410]

Muting/unmuting audio
Before we proceed, we need to create a Music tag similar to the way we created a Sound
tag. Return to the splash scene and select the Music GameObject in the Hierarchy. Create a
Music tag and assign it to the Music GameObject, as shown in the following screenshot:

We need to add a few little UI elements to mute and unmute our audio. We'll add two
buttons to our Town scene that will turn the sound and music on and off. We're going to use
the image on the button to indicate to the player if the sound and music channels are on or
off.

Add the following soundUI.png image to the Assets/Sprites/UI folder. Import it under
Multiple Sprite Mode and slice it automatically:

Navigate to the Town scene and select the PopUp canvas from the Hierarchy. Add two
buttons to the bottom left part of the screen, as shown in the following screenshot:

Sound and Music

[411]

Name the first button Music and the second button Sound.

Now, create a C# script named MuteUnMute within the Assets/Scripts folder , and
replace its code with the following:

using UnityEngine;
using System.Collections;
using UnityEngine.UI;

public class MuteUnMute : MonoBehaviour {
 public Button musicButton;
 public Button soundButton;
 Image musicImage;
 Image soundImage;
 public Sprite MusicOn;
 public Sprite MusicOff;
 public Sprite SoundOn;
 public Sprite SoundOff;

 GameObject soundEffectsSource;
 GameObject musicSource;
 AudioSource musicPlaying;
 AudioSource soundPlaying;
 void Awake(){
 soundEffectsSource=GameObject.FindGameObjectWithTag("Sound");
 musicSource=GameObject.FindGameObjectWithTag("Music");
 if(musicSource!=null){
 musicPlaying=musicSource.GetComponent<AudioSource>();
 }
 if(soundEffectsSource!=null){

Sound and Music

[412]

 soundPlaying=soundEffectsSource.GetComponent<AudioSource>();
 }

 musicImage=musicButton.GetComponent<Image>();
 soundImage=soundButton.GetComponent<Image>();

 //show correct music image when starting scene
 //music is off
 if (musicPlaying.mute==false) {
 musicImage.sprite=MusicOn;
 //music is on
 }else{
 musicImage.sprite=MusicOff;
 }

 //show correct sound image when starting scene
 //sound is off
 if (soundPlaying.mute==false) {
 soundImage.sprite=SoundOn;
 //sound is on
 }else{
 soundImage.sprite=SoundOff;
 }

 }
 public void MuteAndUnMuteMusic(){
 //mute music if off
 if (musicPlaying.mute==false) {
 musicImage.sprite=MusicOff;
 if(musicPlaying!=null){
 musicPlaying.mute=true;
 }
 //unmute music if off
 } else {
 musicImage.sprite=MusicOn;
 if(musicPlaying !=null){
 musicPlaying.mute=false;
 }

 }
 }
 public void MuteAndUnMuteSound(){
 //mute sound if on
 if (soundPlaying.mute==false) {
 soundImage.sprite=SoundOff;
 if(soundPlaying !=null){
 soundPlaying.mute=true;
 }

Sound and Music

[413]

 //unmute sound if off
 } else {
 soundImage.sprite=SoundOn;
 if(soundPlaying !=null){
 soundPlaying.mute=false;
 }
 }
 }
}

The preceding code does the following:

Finds the audio sources and assigns them to the variables soundEffectsSource
and musicSource based on their tags.
Assigns the correct image to the button that controls music and the button that
controls sound when the level starts. For example, if the music is muted when the
player enters the scene, the muted music image will display.
The MuteAndUnMuteMusic() function will be called when a button is clicked. It
will turn the music on and off and change the button image depending on
whether or not the music is already on or off.
The MuteAndUnMuteSound() function performs similarly to the
MuteAndUnMuteMusic() function.

Now, begin playing the game from the SplashScreen scene and you should have full
control of your music and sound through these two buttons.

Going further
If you are adventurous, try expanding your project to add the following features:

Add sound effects to other events
Tie sound effects to animations through animation events
Instead of just muting and unmuting your sound and music, add a volume
control by adjusting the Volume parameter on the Audio Source component

Sound and Music

[414]

Summary
In this chapter, we covered the basics of adding audio to a game. We started out by adding
a blank splash screen to hold our audio sources, added background music to our game,
added a simple sound effect, and finally learned how to mute and unmute the audio
through code.

13
Putting a Bow on It

You have a game; it looks good, plays well, and everyone loves it. The only problem is that
it is still not a finished project.

In this chapter, we will package up the game and surround it with menus and other
features to make it whole. We will then explore how we can extend Unity to make the
content easier and better.

As they say, finishing a project can take up to 80% of the time needed to polish it. Be
warned! This is usually right. To wrap up, we will look at an overview, persisting the
player's data as they play both on the device and on the cloud.

The following topics will be covered in this chapter:

Packaging your game with menus and additional screens
The editor and how to make the most out of it
Saving, loading, and persistence for your game

Building in-game menu structures
Usually left as an afterthought or slapped on at the end, menu systems are just as important
as your game in most aspects. How the user interacts/starts or walks through all the
sections of your game leading to the actual gameplay can radically change how the user
feels about your game. There's no point in having a world-beating game if the first thing the
user sees on starting your game is a roughly drawn or shabby-looking menu system. The
best menu systems I've seen are actually seamlessly built into the game mechanics
themselves.

Putting a Bow on It

[416]

The screens
First off, you need to work out the structure of your menu systems in advance; it doesn't
need to be detailed, just understand the flow of your game from start to finish and then
iterate on that design until it looks impressive and easy to use. The kinds of screens and
areas that you need to focus on are covered in the next section.

Splash screens
We discussed splash screens briefly in the previous chapter, but let's go a little further.
Splash screens tell the user about you and your brand; it's always the first thing they see. If
you animate a splash screen, try to keep it under three seconds; a good baseline is to aim for
between 1-2 seconds. Anything shorter and users won't pay attention; longer and you could
just annoy them by making them wait to start the game.

A big debate I've seen between studios is whether you should allow the user to skip splash
screens, and there doesn't seem to be any firm view either way.

A general piece of advice though is to not allow skipping as it can devalue your brand.

Splash screens can either be separate screens or just a full screen UI Image displayed when
the game loads. Either method will work; the direction you take will largely depend on the
style of your game.

Loading screens
Plan to have a loading screen in advance. You may not actually use it initially, but when
your game runs on lower spec devices, you will find that the loading times will increase,
sometimes dramatically. Be prepared!

A good example of a loading scene tutorial can be found at
http://chicounity3d.wordpress.com/2014/01/25/loading-screen-tutorial/. This
tutorial uses the older GUI system, but can be easily edited to fit with the new UI.

The main menu
The main menu is the obvious focal point when the player starts your game. Ideally, this
should flow in to your game rather than look like a bolt on. Try to use game elements and
moving/animated features.

This screen will be the first true impression of your game the player gets.

http://chicounity3d.wordpress.com/2014/01/25/loading-screen-tutorial/

Putting a Bow on It

[417]

Ensure that the player has a Continue option that returns them to their last point in the game
so that they start playing in as few clicks/taps as possible. If you support the saving option,
have a Continue button to jump on to the last save. If you use levels, jump on to the next
level that they can play.

Don't force the player to wade through mountains of screens just to continue playing. I'm
not saying don't have a new button or an option to select levels; just add an additional
Continue option so they can jump straight in to the game.

Save slots/level selections
The norm these days is just to have a grid array with masses of numbers plastered across
the screen. These aren't bad per se; however, if you want to stand out, think differently.
Surprise the player: stylize these screens as much as possible, animate them, and make them
exciting/interactive.

Settings pages
Every game usually has an array of settings to control various elements of the game itself.
However, don't forget to check platform requirements with regards to these.

If you use audio, always have options to control the volume and a quick mute option; you
may find you have to set this programmatically on some platforms.

If you use location services, then you must have an option to turn this on or off. It's a
mandatory requirement on some platforms. Have a backup plan if the location is not
available.

Try and support closed captioning; it is fairly easy to do this, and it means you open up
your game to an even wider audience. Then, just have a setting to enable/disable it.
Highlight it in your description on the store; you'll get extra credit for this from your users
and reviewers.

The About screen
There are so many games that leave out the About screen. This is not essential by any
means, but you can have a page that describes your game studio, the developers, any extra
credits for artists, resources, and so on. This screen generally doesn't have to be fancy, but it
helps.

Putting a Bow on It

[418]

Privacy policy
In an ever-growing world of security, privacy, and data protection, even if your game
doesn't use any online features or store any data about the user, it is still essential to include
a privacy policy.

On some platforms, it is becoming mandatory to have your policy stated somewhere in the
app/game.

Do not ship your game without some form of privacy policy.

Policies do not have to be extensive, and there are numerous examples of different types of
policies out there; a quick search or a good lawyer will stand you in good stead.

The following site lists several generators; just pick the one that is right for you to get
started: http://www.applicationprivacy.org/do-tools/privacy-policy-generator/

Pause screens
Like a lot of common screens used throughout your game, from scene to scene, one of the
most common panels the player will see is the Pause menu.

Whether it is a simple on hold screen or a full navigation system, you should devote some
care to how you design it. Some games truly build the pause screen into the game and make
it part of the game experience, while others just stop everything and throw up a panel.

When designing your pause screen think outside the box and don't just do what is
necessary. Make it interesting!

If you are using a state machine (as in this book), you should then also progress it to a
paused state as well.

A simple way to stop all of the game updating (and effectively pause the
game) is to set Time.timeScale = 0; but if you have logic that requires
updates on the screen, then this may not work.

http://www.applicationprivacy.org/do-tools/privacy-policy-generator/
http://www.applicationprivacy.org/do-tools/privacy-policy-generator/

Putting a Bow on It

[419]

Additional menus (purchasing, achievements,
leaderboards, and so on)
Generally shown as big lists on screens, these areas are your main way to entice the player
to keep playing, whether it's to compete with friends for the highest scores or work toward
a number of achievements (for the completionists out there). You should try to make these
screens fun and informative. For levels, think about linking them with friends of the player
to see how they compete with each other, or offer deals/promotions. As per a repeated
statement in this chapter, think about what makes your game different and go beyond the
norm.

Social
In an ever-increasing social world, games need to react to this and think beyond the
boundaries of just the game. Whether you are enabling simple bragging on levels/scores or
if you are using social networks to find friends online and suggest games, you have to
consider social link-ins with your game to stay competitive.

Social integration is not required, but an ever increasing number of players now actively
look for it, so you should consider it at some level.

The flow
When you have decided on all the screens within your game, the next step is to visualize
(before cutting code) how they will all fit together. It doesn't take long and can save you
hours of head-scratching later.

You can either grab a piece of paper or download some of the many free tools out there
such as FreeMind (a mind-map tool at
http://freemind.sourceforge.net/wiki/index.php/Main_Page) and Expression Design
(now free from MS at
http://www.microsoft.com/en-gb/download/details.aspx?id=36180).

In the end, you want to have written down how each screen will connect to each other,
what state the game will be in for that transition, and any key information that will need
storing to prevent failure (since your game could be closed at any point by the user). At all
states (based on how your game is intended to work), the player's current state should be
preserved; whether you save it once or progressively will be impacted by how your screens
fit together.

http://freemind.sourceforge.net/wiki/index.php/Main_Page
http://www.microsoft.com/en-gb/download/details.aspx?id=36180

Putting a Bow on It

[420]

The following diagram shows a very simple example in a mind-map tool of a game screen
flow:

Finishing our splash screen
Open the scene created in the last chapter that functioned as our splash screen,
SplashScreen.unity. Currently, this screen simply displays for 1 second and starts
playing the music. Let's get a little fancier and add a logo to the scene. Usually I use this
screen to show my company's logo zooming in for 3 seconds.

For this example, I am going to just have the Packt Publishing logo display for 3 seconds.
Add the following packt.png image to the Assets/Sprites/UI folder:

Putting a Bow on It

[421]

Now change the Background color of the Main Camera to white.

Drag the packt.png image to your scene and set its Transform Position to 0,0,0.

Right now, if we were to play the game, the image would show for 1 second and then the
Town scene would open. We want this to transition to the StartScreen after 3 seconds. So,
select the Main Camera, and change the settings on the SplashScreen script as follows:

We have not yet added the StartScreen to our build settings, so do so now; otherwise, we
will get an error when we attempt to play the game. It doesn't matter what position in the
list you place the StartScreen, but I prefer to have it as my second scene. As shown in the
following screenshot:

Now when we play the game, the Packt Publishing logo will display for 3 seconds, the
music will begin, and we will be taken to the blank StartScreen.

Putting a Bow on It

[422]

Building our start screen
As stated earlier, the start screen is the first screen the player will see and a lot of their
opinion of your game will be derived from how good it looks. If you are not the artistic type
and don't have an eye for layout, I highly recommend looking at the start screen of other
games to get an idea of what to make it look like. Usually the start screen has its own
unique game art.

We're going to make a very simple (and sadly, kind of ugly) start screen for now. You can
adjust this later to make it more attractive and give it menus, but we are just going to have
the title of the game, the town's background image, and a Play button.

Select StartScreen from the Assets/Scenes folder. Select Create | UI | Image from the
Hierarchy. We want this background image to scale with the screen size, so select the
Canvas and change the Canvas Scaler properties as the following shows:

Putting a Bow on It

[423]

We used 1024×768 as the reference resolution, because the background image we will use
has that resolution.

Now select the Image from the Hierarchy and change its anchor presets so that it stretches
across the entire screen. Add the background image to the Source Image slot of the Image
script. Do not select Preserve Aspect. Oddly enough we are OK with this scaling if we have
a different screen size; we just want it to always fill the screen. As shown in the following
screenshot:

Putting a Bow on It

[424]

Now add text to the scene by right-clicking on the Canvas and selecting UI | text. Change
the text to Mastering Unity 2D and give it the following properties:

To make it a little more attractive, give it a drop-shadow, by selecting Add Component | UI
| Effects | Shadow. Change the properties as shown in the following screenshot:

Putting a Bow on It

[425]

Now, we just need a button that will navigate the player from this screen to the Town
screen. Create a UI button on the screen, and center it. Change its text to display the word
Play.

Your scene should look as follows:

Now, create a script called LevelLoader in the Assets/Scripts folder. This will be a
simple script that will transition to the next scene when the Play button is pressed. Replace
its code with the following:

using UnityEngine;
using System.Collections;
using UnityEngine.SceneManagement;

public class LevelLoader : MonoBehaviour {

 public string levelToLoad = "Town";

 public void LoadTheLevel(){
 SceneManager.LoadScene(levelToLoad);
 }
}

Putting a Bow on It

[426]

Attach this script to the button and have the button run the LoadTheLevel function when
it is clicked, as shown in the following screenshot:

Return to the SplashScreen, and play the game. You now will be taken to the
StartScreen after 3 seconds and can enter the town upon hitting the lay button.

Extending the editor
Now that we have the basic functionality of our game set up, let's look at some interesting
things we can do to make further development easier.

Everyone who uses Unity knows about the editor. It's the core place where you will spend a
great deal of time putting your game together. You will spend the rest of your time in your
code editor, patching things together, adding values, and working around with what most
see as limitations of the editor itself. This, however, is not the case.

The people at Unity realized early that they couldn't do everything, since everyone wanted
something different or little tweaks here and there; if they had tried to do everything,
nothing would have ever left their doors.

So, from the ground up, Unity was designed to be extensible, and they exposed much of
what is needed to build your own editor in effect within Unity itself.

If you browse the Asset Store (https://www.assetstore.unity3d.com/), you will see a lot
of assets that take advantage of this, and they have produced some really snazzy bolt-ons
for the editor. These can reduce the need to code and just build things using the editor GUI.

These aren't magical things and most don't even require low-level C++ coding to achieve
(although some do). You can update your editor to fix your game very easily, and you can
do this in any of the languages that Unity supports.

https://www.assetstore.unity3d.com/en

Putting a Bow on It

[427]

The scripting framework behind the editor is broken up into several distinct layers that can
be combined to give you almost any effect you need to build your content.

The property drawers
The editor only has a basic way of looking at properties in the Inspector pane based on the
classes and objects used in your game. If you are using an existing Unity class, such as a
string, color, or curve, Unity already has ready-made property drawers (or visual handles)
to manage these with their own editor windows in some cases (such as the curve editor).
The majority of these are also built on the extensible framework that Unity exposes and is
available to you as well.

Other classes such as vectors and numbers have a basic implementation, which is usually
fine, but sometimes you just prefer it in a different way.

This is where the property drawers come in. They can either replace the existing property
viewer for a single field or for a type of object entirely. If you want a slider to alter a value
between two values, add a PropertyDrawer attribute to the property to show a slider
instead of just int or float as follows:

[Range (0, 100)]
public float health = 100;

The preceding code example shows a range slider instead of a single float value as you
can see in the following screenshot:

For a more advanced example, check out the post on the Unity blog, which
shows several different patterns to use your property drawers and even
create them. The post is available at
http://blogs.unity3d.com/2012/09/07/property-drawers-in-

unity-4/.

http://blogs.unity3d.com/2012/09/07/property-drawers-in-unity-4/
http://blogs.unity3d.com/2012/09/07/property-drawers-in-unity-4/

Putting a Bow on It

[428]

While building the property drawers, you will use the EditorGUI controls to draw the
elements on the screen. The EditorGUI class provides a rich collection of controls that can
be used. For a list of available controls, visit
https://docs.unity3d.com/Documentation/ScriptReference/EditorGUI.html.

The property drawers can only use the default layouts in the EditorGUI
class. For performance reasons, they cannot use the automatic controller
found in the EditorGUILayout class, which is used in EditorWindows.

For more information on property drawers, see the Unity reference guide at
https://docs.unity3d.com/Documentation/ScriptReference/PropertyDrawer.html.

If you want to see some more creative uses for property drawers, check
out the simple little GitHub repository at
https://github.com/tenpn/ChestOfPropertyDrawers.

Examples property drawers
Using the NPC script in Assets\Scripts\Classes, let's see the effect of adding some
simple property drawers to our NPCs in the Inspector pane.

Built-in property drawers
Starting simply, we can decorate some of the properties of the NPC class in our game with
the Range attribute by adding the following code:

public string Name;
[Range(10, 100)]
public int Age;
public string Faction;
public string Occupation;
[Range(1, 10)]
public int Level;

Now if you look at the Mayor class's Inspector (remember, he's in the Town scene), the
preceding code has the following effect on the editor Inspector:

https://docs.unity3d.com/Documentation/ScriptReference/EditorGUI.html
https://docs.unity3d.com/Documentation/ScriptReference/PropertyDrawer.html
https://github.com/tenpn/ChestOfPropertyDrawers

Putting a Bow on It

[429]

This just makes it easier to manage your settings and makes it a little prettier to look at.
Now, let's look at something a little more complicated.

Custom property drawers
Creating your own property drawer is certainly a bit more advanced. However, once you
have learned the basics, it is quite easy to build your own.

For this example, we will create a simple pop-up that takes an array of values for possible
selection, as shown in the following screenshot:

Putting a Bow on It

[430]

First, we need a property type or attribute that we want to control. This could be a set of
parameters (such as the Range property, which has a beginning and an end), a validation
string, or even an enumeration.

The property type or attribute you want to control has to live in your
project folder and not in the special Editor folder. Unity's documentation
is not clear enough on this.

So, create a new folder named Properties in Assets\Scripts\Classes. Then, create a
new C# script named PopUpAttribute in the Properties folder and replace its contents
with the following code:

using UnityEngine;
public class PopUpAttribute: PropertyAttribute
{
 public string[] value;
 public PopUpAttribute(params string[] input)
 {
 value = input;
 }
}

Note that your property class must be derived from the PropertyAttribute class, and it
must have a constructor with the same number of parameters required for your attribute
(for example, the Range attribute has two int values).

In a strange (I suspect reflection) circumstance, you can either call your
class by its name or suffix it with the word Attribute (as shown in the
preceding code); both will be recognized by the name alone.

For example, PopUpAttribute can be recognized as PopUp or
PopUpAttribute.

With the property in place, we can now add our custom property drawer code. Unlike the
property we just created, this does have to live in the special Editor folder.

Putting a Bow on It

[431]

So, create a new folder named PropertyDrawers in the Assets\Scripts\Editor folder
and create a new script named PopUpCustomPropertyDrawer, replacing its contents with
the following code:

using UnityEditor;
using UnityEngine;

[CustomPropertyDrawer(typeof(PopUpAttribute))]
public class PopUpCustomPropertyDrawer : PropertyDrawer {

 PopUpAttribute popUpAttribute {
 get { return ((PopUpAttribute)attribute); } }
}

The preceding code gives us the basic framework for our custom property drawer (the
public property I've added isn't mandatory, but provides quick and easy access to the
underlying property type we are enabling). Next, we need to add the OnGUI function,
which will draw our custom property UI using the following code:

public override void OnGUI(Rect position, SerializedProperty prop,
GUIContent label)
{
 if (prop.propertyType != SerializedPropertyType.String)
 {
 throw new UnityException("property " + prop + " must be string
to use with PopUpAttribute ");
 }

 var popupRect = EditorGUI.PrefixLabel(position,
GUIUtility.GetControlID(FocusType.Passive), label);

 var currentItem = prop.stringValue;
 var currentIndex = popUpAttribute.value.Length - 1;
 for (; currentIndex >= 0; currentIndex--)
 {
 if (popUpAttribute.value[currentIndex] == currentItem)
 break;
 }

 int selectedIndex = EditorGUI.Popup(popupRect, currentIndex,
popUpAttribute.value);
 prop.stringValue = selectedIndex < 0 ? "" :
popUpAttribute.value[selectedIndex];
}

Putting a Bow on It

[432]

Walking through the preceding script is quite simple; it is described as follows:

The class is decorated with a CustomPropertyDrawer attribute and the type of
class it is targeted at.
As stated, the class is derived from the PropertyDrawer class.
A helper property (popUpAttribute) gets the correct type of class from the
attribute property of the PropertyDrawer base class (optional).
We override the OnGUI function for the property drawers.
We then check whether the target property (the variable you will attach this to) is
of the correct type (in this case, a string). It returns UnityException if it is not
correct.
A Rect variable is defined for where we want to draw the output from our
property drawer (a requirement for using the EditorGUI.Popup control).
We get the current value for the property we are attached to and compare it with
the possible values for the item. We do this only because we have a list of options
and need to know which is the current one. For other types, this may not be
needed.
We draw a pop-up control using the EditorGUI.Popup control.
Lastly, we set the property we are attached to with the value the user has
selected.

We could have used an enum object instead of an array to give us a more
programmatic approach, in which case the preceding steps would be very
similar. However, this approach allows us to set the scope of the selection
for each property.

With the property and our custom property drawer in place, we can decorate the variables
in our NPC class to achieve the result I pictured earlier, as follows:

public string Name;
[Range(10, 100)]
public int Age;
[PopUp("Good Guy", "Independent", "Bad Guy")]
public string Faction;
[PopUp("Mayor", "Shopkeep", "Layabout")]
public string Occupation;
[Range(1, 10)]
public int Level;

It may seem like a lot of fuss. However, once it's complete, you can tune the Unity editor to
work for you more efficiently.

Putting a Bow on It

[433]

Custom editors
Say you want to control the entire scope of a single class or ScriptableObject; this is
where CustomEditor scripts come in.

They can be used against any script that can be attached to a game object to alter how it
works in the Unity editor Inspector.

As an example of these (the best way to show custom editors is through code), we will add
some functionality to a camera to provide us with better control over it in a scene. This is
just an example, and won't be implemented in our game.

First, we'll need a very simple camera script that will point the camera at a specified target,
starting at 0, 0, 0. So, create a new script named CameraLookAt in Assets\Scripts and
replace its contents with the following code:

using UnityEngine;

public class CameraLookAt : MonoBehaviour
{
 public Vector3 cameraTarget = Vector3.zero;

 void Update()
 {
 transform.LookAt(cameraTarget);
 }
}

We can then define a CustomEditor script that will be run by the editor whenever it
detects a game object with the script attached to it.

As with a lot of editor features, remember (as a good rule of thumb) that, if
a class requires the UnityEditor namespace, it will need to live in the
special Editor folder in your project.

So, create a new C# script called CameraTargetEditor in Assets\Scripts\Editor in
your project and replace its contents with the following code:

using UnityEngine;
using UnityEditor;

[CustomEditor(typeof(CameraLookAt))]
public class CameraTargetEditor : Editor
{
 public override void OnInspectorGUI()

Putting a Bow on It

[434]

 {
 CameraLookAt targetScript = (CameraLookAt)target;
 targetScript.cameraTarget =
 EditorGUILayout.Vector3Field ("Look At Point",
 targetScript.cameraTarget);
 if (GUI.changed)
 EditorUtility.SetDirty(target);
 }
}

This script doesn't do much yet; we now have a Vector3 handle in our script that displays
the position of the camera's target (the specific point it is looking at). What is very nice here
is that you can edit the values and the camera will automatically transform itself to look at
the new point. To demonstrate this, create a new scene named EditorDemos in
Assets\Scenes and attach the CameraLookAt script to Main Camera. If you then select
the Main Camera game object in the Hierarchy, you will see the following settings in the
Inspector pane:

This is a lot easier than messing with the rotation values of the ordinary camera. Let's
continue to add more functionalities that will blow your mind.

If the custom editor script depends on certain properties or components
being available on the game object you attach it to, then be sure to use the
RequireConponent attribute on the base class (not the CustomEditor
script).

To make it even more useful, we can also represent this selection in the scene view as a
control handle. To do this, we simply add another function to our
CameraTargetEditorCustomEditor script; add the following OnSceneGUI function to
the script:

void OnSceneGUI()
{
 CameraLookAt targetScript = (CameraLookAt)target;
 targetScript.cameraTarget = Handles.PositionHandle(
 targetScript.cameraTarget, Quaternion.identity);
 if (GUI.changed)
 EditorUtility.SetDirty(target);
}

Putting a Bow on It

[435]

Just as the OnGUI method draws in to your game, this function will draw in to the editor
scene. Using the Handles.PositionHandle control, it will draw a regular handlebars
control in the scene at the point you have specified, in this case, the camera's look-at target,
as seen in the following screenshot:

Camera Target (1) and Camera Transform (2)

Want more? You can then alter how the handlebars will look on the screen with the
following code:

void OnSceneGUI()
{
 CameraLookAt targetScript = (CameraLookAt)target;
 targetScript.cameraTarget = Handles.PositionHandle(
targetScript.cameraTarget, Quaternion.identity);
 Handles.SphereCap(0, targetScript.cameraTarget,
Quaternion.identity, 2);
 if (GUI.changed)
 EditorUtility.SetDirty(target);
}

As shown in the following screenshot, this simply alters the handlebars we are drawing,
decorating them with a sphere. There are several other options as well should you choose to
explore them:

(1) Camera Target Sphere, (2) Camera Transform

Putting a Bow on It

[436]

For more information about custom editors, see the Unity reference guide
at
http://docs.unity3d.com/Documentation/ScriptReference/Editor.htm

l.

For more information about handles and what you can do with them, see
the Unity reference guide at
http://docs.unity3d.com/Documentation/ScriptReference/Handles.ht

ml.

The editor window
Quite simply, Unity editor windows are just separate containers for collections of editor
GUI controls. These windows are a more advanced version of the property drawers
described previously, and as such use a different set of custom controls.

The Inspector, Game, and Scene windows, and pretty much every other dockable window
in the Unity editor, are editor windows. In fact, they are all built in the same way using the
same scripting framework.

As stated previously, remember that any script that uses the editor
functionality or the UnityEditor namespace must be placed in a special
project folder titled Editor.

To implement your own editor window, you simply need to create a class derived from
EditorWindow instead of MonoBehaviour. The script must also live in the special Editor
folder within the project structure, so create a new script called MyEditorWindow in
Assets\Scripts\Editor, as follows:

using UnityEditor;
using UnityEngine;

public class MyEditorWindow : EditorWindow
{
string windowName = "My Editor Window";
bool groupEnabled;
bool DisplayToggle = true;
float Offset = 1.23f;

}

http://docs.unity3d.com/Documentation/ScriptReference/Editor.html
http://docs.unity3d.com/Documentation/ScriptReference/Editor.html
http://docs.unity3d.com/Documentation/ScriptReference/Handles.html
http://docs.unity3d.com/Documentation/ScriptReference/Handles.html

Putting a Bow on It

[437]

I've added some properties to give some depth to the example.

With your new window in place, you then need to implement a function to display the
window when it is called inside the new MyEditorWindow class:

[MenuItem ("Window/My Window")]
public static void ShowWindow ()
{
 EditorWindow.GetWindow(typeof(MyEditorWindow));
}

It doesn't matter what the preceding function is called; it's just an editor
reference attribute attached to the function to show where the option will
appear in the Unity editor menu.

If you want more control over the size and position of your editor window, instead of using
the preceding GetWindow function, you can use the following GetWindowWithRect
function:

[MenuItem ("Window/My Window")]
public static void ShowWindow ()
{
 EditorWindow.GetWindowWithRect(typeof(MyEditorWindow),
 new Rect(0, 0, 400, 150));
}

This will set the position and size of the window to a fixed point on the screen but, as with
all other editor windows, it can then be resized and docked like any other window. This
method is more useful for displaying a collection of properties in the scene view to edit
nodes or other position-based visual configuration.

Lastly, you need some GUI code. This is pretty much the same as the normal GUI code, but
with a few editor extensions because it is being drawn in the editor. This goes in to an
OnGUI method, for example:

void OnGUI()
{
 // Your custom Editor Window GUI code
 GUILayout.Label("Base Settings", EditorStyles.boldLabel);
 windowName = EditorGUILayout.TextField("Window Name",
 windowName);
 groupEnabled =
 EditorGUILayout.BeginToggleGroup("Optional Settings",
 groupEnabled);

Putting a Bow on It

[438]

 DisplayToggle =
 EditorGUILayout.Toggle("Display Toggle", DisplayToggle);

 Offset = EditorGUILayout.Slider("Offset Slider",
 Offset, -3, 3);
 EditorGUILayout.EndToggleGroup();
}

The preceding example will show the following menu window:

When you put GUI elements together in an editor window, you can use either the basic
EditorGUI controls or the more advanced EditorGUILayout controls, which implement
some additional automatic layout features on top of the basic controls.

For more details about the controls available with EditorGUILayout,
check out the Unity reference at
https://docs.unity3d.com/Documentation/ScriptReference/EditorGUI

Layout.html.

For more information on editor windows, see the Unity reference guide at
https://docs.unity3d.com/Documentation/ScriptReference/EditorWin

dow.html.

Gizmos
With custom editors, you could also have handles to represent a control in the scene view,
extending the Inspector features in to the scene.

We also have another way to have class-based features that are only available in the editor
through the use of Gizmos.

https://docs.unity3d.com/Documentation/ScriptReference/EditorGUILayout.html
https://docs.unity3d.com/Documentation/ScriptReference/EditorGUILayout.html
https://docs.unity3d.com/Documentation/ScriptReference/EditorWindow.html
https://docs.unity3d.com/Documentation/ScriptReference/EditorWindow.html

Putting a Bow on It

[439]

Gizmos offer a much richer graphical way to add visual elements to the scene to aid the use
of a class, unlike custom editors; which are only added to your base class, which the editor
will then make use of.

The OnDrawGizmo functions are only available on classes that are derived
from MonoBehaviour, not the Editor classes.

For example, we can amend the CameraLookAt script we created earlier and make it draw
a Gizmo line from the camera to the target's look-at point by adding the following code to
the script:

void OnDrawGizmos()
{
 Gizmos.color = Color.yellow;
 Gizmos.DrawLine(transform.position, cameraTarget);
}

The code produces the following result:

Now, when you return to the editor and move the look-at point or the camera, there will be
a yellow line drawn between them.

If you collapse the script in the Inspector pane, this will turn off the
Gizmo. This is handy if you want to just hide it.

Putting a Bow on It

[440]

If you don't want the Gizmo drawn all the time, you can also track when the user has the
Gizmo selected using the OnDrawGizmosSelected method, as follows:

void OnDrawGizmosSelected()
{
 Gizmos.color = Color.red;
 Gizmos.DrawLine(transform.position, cameraTarget);
}

Now when the GameObject the script is attached to is selected in the editor, the line will be
drawn in red instead of yellow. Alternatively, just use the OnDrawGizmosSelected
function on its own to only draw a line when selected.

For more information on Gizmos, see the Unity reference guide at
http://docs.unity3d.com/Documentation/ScriptReference/Gizmos.htm

l.

For fantastic additional resources and tutorials, check out the article on
CatLike Coding's blog at
http://catlikecoding.com/unity/tutorials/editor/star/.

Or, you can check out the excellent Gimzo-driven design tutorial at
http://code.tutsplus.com/tutorials/how-to-add-your-own-tools-to-

unitys-editor–active-10047.

Building your editor menus
Another way of extending in to the editor is to customize it by adding your own menus. We
covered little bits of this in previous chapters by adding extra options to create your assets;
however, there's much more to it than that.

The MenuItem functions must be declared as a Static functions,
otherwise they will not be recognized. Scripts must be placed in the
special Editor folder.

http://docs.unity3d.com/Documentation/ScriptReference/Gizmos.html
http://docs.unity3d.com/Documentation/ScriptReference/Gizmos.html
http://catlikecoding.com/unity/tutorials/editor/star/
http://code.tutsplus.com/tutorials/how-to-add-your-own-tools-to-unitys-editor--active-10047
http://code.tutsplus.com/tutorials/how-to-add-your-own-tools-to-unitys-editor--active-10047
http://code.tutsplus.com/tutorials/how-to-add-your-own-tools-to-unitys-editor--active-10047
http://code.tutsplus.com/tutorials/how-to-add-your-own-tools-to-unitys-editor--active-10047

Putting a Bow on It

[441]

Adding a MenuItem attribute
The main way to add a new menu item is to define a script in Assets\Scripts\Editor
and append the MenuItem attribute to a static method within it. So, create a new script
called MyMenu in this folder and replace its contents with the following code:

using UnityEditor;
using UnityEngine;
public class MyMenu
{
 // Add a menu item named MenuItem1 to a Menu option called
 // MenuName in the menu bar.
 [MenuItem ("MenuName/MenuItem1")]
 static void EnableMyAwesomeFeature ()
 {
 Debug.Log ("I am a leaf on the wind. Watch how I soar.");
 }
}

This code simply creates a new top-level menu option called MenuName with a single item
called MenuItem1, as shown here:

From here, you can execute whatever you need to.

When you return to Unity after adding a menu script, it may sometimes
not show up immediately. You can either click on the menu bar or restart
the editor to make it appear (it just needs a nudge).

Enabling/disabling a MenuItem attribute
We can extend this further by adding a validation logic method to support a MenuItem
attribute. This controls whether the menu option is enabled or not.

For this, you need to create a pair of the following items:

A menu item
A menu item validator

Putting a Bow on It

[442]

The menu item and the menu item validator must have the same menu
path. So, if the menu item (as declared previously) is [MenuItem
("MenuName/MenuItem1")], the validator must have the same menu
definition as follows:

[MenuItem ("MenuName/MenuItem1", true)]

Validators do not add menu items. They only extend or validate existing
menu items.

So, using the menu item we just added earlier, we can add a validator menu function. It
must have a return type of bool and an additional flag set against the function attribute, as
follows:

[MenuItem ("MenuName/MenuItem1", true)]
static bool CheckifaGameObjectisselected() {
 // Return false if no transform is selected.
 return Selection.activeTransform != null;
}

This simple validator just checks whether you have a game object selected in the editor; if
not, then MenuItem1 is disabled.

This new validation function is evaluated by the editor whenever it displays the menu item
of the same name. Setting the bool flag at the end of the MenuItem attribute tells the editor
that this function provides the validation logic for a MenuItem attribute of the same name.
Then, the editor will enable or disable that MenuItem attribute based on the return of the
validator function.

Adding shortcut keys to a MenuItem attribute
If you add % and a letter to the end of your MenuItem attribute, Unity will also enable a
shortcut key for that letter.

So, %g would enable a shortcut of Ctrl + G on Windows and cmd + G on a Mac.

Putting a Bow on It

[443]

For example, add a new function to our MyMenu script as follows:

[MenuItem ("MenuName/MenuItem2 %g")]
static void EnableMyOtherAwesomeFeature()
{
 Debug.Log ("Find my key and win the prize - g");
}

This will show us an additional option with the shortcut defined, as you can see here:

Adding contextual MenuItems
The last bit of trickery you can perform is to add menu items to the existing features of
Unity, even Inspector.

You do this with a custom name for the MenuItem attribute and a different signature for the
function. So, we add the following method to our MyMenu script:

[MenuItem("CONTEXT/Transform/Move to Center")]
static void MoveToCenter(MenuCommand command)
{
 Transform transform = (Transform)command.context;
 transform.position = Vector3.zero;
 Debug.Log("Moved object to " +
 transform.position + " from a Context Menu.");
}

The preceding script attaches itself to any transform component (in this case, the Inspector
pane). Then, when it is run, the parameter on the function receives the instance of the object
it was run on and lets you interrogate or alter it, resulting in the following screenshot:

Putting a Bow on It

[444]

The structure of the special MenuItem name is as follows:

Context: This is a fixed item to identify the menu as a contextual item
Object: This is the type of object this context menu will be available on
Name: This is the name of the menu item

You can just add extra dimensions/children to context menus by adding
additional "/" characters.

However, if there is an error or your menus are too deep, Unity won't
show the error; it just won't display the menu item (leaving you scratching
your head). If this happens, try setting a shorter or different menu name.

Context menus can be added to just about any object/component in the Unity editor,
including your own objects.

For more information on the MenuItem class and its use in Unity Editor,
see the Unity scripting reference guide at
https://docs.unity3d.com/Documentation/ScriptReference/MenuItem.

html.

https://docs.unity3d.com/Documentation/ScriptReference/MenuItem.html
https://docs.unity3d.com/Documentation/ScriptReference/MenuItem.html

Putting a Bow on It

[445]

Running scripts in the Editor folder
The last little tidbit you should be aware of surrounds scripts and their execution.

If you put a script in the Editor folder, it will be executed when you are in the editor.
However, what about all your other scripts?

You can certainly run the game and see the script running, but that doesn't help you when
you are in the editor. What if you want to see the effect of your script while manipulating
game objects in your scene?

Thankfully, there is a way to force the editor to run your script, and all it takes is yet
another attribute called ExecuteInEditMode added to your class. To do this, simply add
the following line above the class definition of the script you want to affect:

[ExecuteInEditMode]

If you are applying this to the GUI that repositions itself to the scene, the
visual aspect you see in the editor may not be the same as when the game
is running. So, things may position differently. You either manage it in the
code or live with it in the editor; it's up to you.

If you have portions of your script that rely on other components that may
not be active in the editor, be sure to check for null references in your code
to avoid nasty errors in the console, which may lead you down a dark
path.

Also, any calls to the Static classes in the OnDestroy method may
generate errors/warnings when they are run in the editor; so just be aware!

Alternative approaches
There is always more than one way to cut the cheese as they say, and so too it is with Unity.
Some more advanced options to run the scripts in the editor include the following methods.

The [InitialiseOnLoad] attribute
Another advanced feature with the editor is to make use of the [InitialiseOnLoad]
attribute. What this attribute does is run whatever class or script it is attached to when the
editor opens or when a build event occurs (such as after you edit a script or run the project).
Most developers use this for tracking purposes or to have background processes run
whenever something has changed. This is especially useful if you have some level data

Putting a Bow on It

[446]

stored in a custom file and need to regenerate a scene or level based on that configuration.

Unlike [ExecuteInEditMode], the [InitialiseOnLoad] attribute is an
editor-only feature, and the scripts using it must be placed in the special
Editor folder in your project.

It is recommended that you combine the use of the [InitialiseOnLoad] attribute
together with a static constructor to ensure the script will run before any other scripts in the
scene or project.

If you are loading resources in an [InitialiseOnLoad] class, beware
that the file system may not be initialized when the script starts. It's
recommended you delay it until the first editor update (using the
following method). For more details, check out the detailed post at
http://bit.ly/InitiliseOnLoadResources.

Editor application callbacks
The editor, like a lot of things in Unity, also comes adorned with several callbacks to mark
when things happen. Exposed through the EditorApplication class, you can gain access
to the following events:

Event/delegate Description

update This event is called every time the editor window is
updated or refreshed. Note that this is more often when the
game or scenes update calls.

projectWindowItemOnGUI This event is called for each project item in the view of the
Project window when it is drawn to the screen.

hierarchyWindowItemOnGUI This event is called for each item in the Hierarchy window
when it is drawn to the screen.

projectWindowChanged This event is called whenever an item is changed in the
Project window.

hierarchyWindowChanged This event is called whenever an item is changed in the
Hierarchy window.

playmodeStateChanged This event is called when you start or stop the game in the
editor.

searchChanged This event is called whenever search criteria are changed in
any Editor window.

http://bit.ly/InitiliseOnLoadResources

Putting a Bow on It

[447]

Event/delegate Description

modifierKeysChanged This event is used to track when a modifier key (Alt, cmd,
Ctrl, and so on) is pressed. So, you need to change a view
when a modifier key is pressed, and you need to watch for
this event/delegate.

These events can be added to any class/script in your Editor project folder, so you can
hook up a functionality to run when these events occur using the following syntax. For
example, let's employ the following methods in an editor script to fire whenever we change
the project's Hierarchy:

void OnEnable()
{
 // Event / delegate registration, usually put in the OnEnable
 //or other function
 EditorApplication.hierarchyWindowChanged +=
HierarchyWindowChanged;
}

//callback function for when event occurs
void HierarchyWindowChanged()
{
 //Scan hierarchy for new items
 //If found add something to the editor window
}
void OnDestroy()
{
 // Don't forget to unregister the delegate when it goes out of
 //scope or is not needed
 EditorApplication.hierarchyWindowChanged -=
HierarchyWindowChanged;
}

This gives your editor scripts the ability to react to whatever the editor does by attaching to
the hierarchyWindowChanged event when the script is enabled (make sure you unattach
it when the script is disabled).

Mixing it up
In more advanced cases, you can build a framework that combines with the previous
approaches effectively to create a complete editor manager. This needs to be implemented
in a class with a static constructor so that it is initialized as soon as the editor starts.

Putting a Bow on It

[448]

To demonstrate this, let's create a simple script that will save the scene for us when we hit
the Play button. First, create a new script called SaveSceneOnPlay in
Assets\Scripts\Editor and replace its contents with the following code:

using UnityEditor;
using UnityEngine;
[InitializeOnLoad]
public class SaveSceneOnPlay
{
 // Static class constructor,
 // this is initialized as soon as Unity Starts
 static SaveSceneOnPlay()
 {
 }
}

This gives us the framework for an [InitializeOnLoad] script that will run when Unity
starts. Then, we add our static function to do the work of saving the scene:

static void SaveSceneIfPlaying()
{
 if (EditorApplication.isPlayingOrWillChangePlaymode &&
 !EditorApplication.isPlaying)
 {
 Debug.Log("Automatically saving scene (" +
 EditorApplication.currentScene +
 ") before entering play mode ");
 EditorApplication.SaveAssets();
 EditorApplication.SaveScene();
 }
}

This method checks whether the editor is about to change the play state and is not being
played currently; if this is the case, then it saves the current changed assets and the current
scene.

Next, we hook up this function with the playmodeStateChanged event delegate in the
static constructor as follows:

static SaveSceneOnPlay()
{
 EditorApplication.playmodeStateChanged += SaveSceneIfPlaying;
}

Now, with this script in our project, whenever we hit Play, the script will automatically save
the project for us.

Putting a Bow on It

[449]

Working with settings
Saving data is always important, especially in games where you need to keep track of the
player's progress or at the very least maintain a track record of scores, plays, and other
important data.

Within Unity, there is only one method of storing data natively, and that is PlayerPrefs. It
is very simple to use and very flexible, although it does have a hard limit of 1 MB of storage
for the web player. It is possible to serialize data into PlayerPrefs (and some developers
do this), but generally if you need to serialize, most developers build their own system.

Using PlayerPrefs
PlayerPrefs is simply a key dictionary to store individual variables as a key in the Unity
runtime data store. On its own, it has to read each and every scene at runtime, which is why
most games use a static class to keep the state stored in PlayerPrefs and only use it
between scenes for scene-specific configuration.

Using PlayerPrefs is very easy and simple. The process is the same as any other
dictionary to save a setting for your call:

PlayerPrefs.SetInt("PlayerScore", currentScore);
PlayerPrefs.SetFloat("PlayerDamage", currentDamage);
PlayerPrefs.SetString("PlayerName", currentPlayerName);

Loading it back again when you need it again involves the following code:

currentScore = PlayerPrefs.GetInt("PlayerScore");
currentDamage = PlayerPrefs.GetFloat("PlayerDamage");
currentPlayerName = PlayerPrefs.GetString("PlayerName");

You can also supply defaults to values with a second parameter if the setting does not yet
exist, as follows:

currentScore = PlayerPrefs.GetInt("PlayerScore", 0);
currentDamage = PlayerPrefs.GetFloat("PlayerDamage", 0);
currentPlayerName = PlayerPrefs.GetString("PlayerName", "New Player");

By default, Unity will save the settings to disk when the application is closed. However, it's
recommended that you save them intermittently when possible by calling the following:

PlayerPrefs.Save()

Putting a Bow on It

[450]

Saving settings in Unity isn't necessarily a given and should not be treated
as safe. The settings file has a hard limit of 1 MB of storage on the web
player. If this is exceeded, it will throw an exception. This limit is for each
application.

So, you can either drastically limit what settings you store (recommended)
or wrap your SET PlayerPrefs calls in a try/catch statement to be safe
if you plan to deploy to the web player.

Other platforms do not have this limitation.

There are also delete functions to remove either a single key or to clear the cache
completely.

For more information about PlayerPrefs, see the Unity reference guide at
https://docs.unity3d.com/Documentation/ScriptReference/PlayerPrefs.html.

Serializing your data
To store any kind of complicated data or structure, you need to serialize it into a
concatenated format. The result can then be stored in PlayerPref as mentioned previously
or saved on a disk or the web.

There are several types of serializer you can use, including the following:

Binary serialization: This is binary-formatted output and is non-human-readable
XML serialization: This is the basic text output formatted into XML and is
human-readable
JSON serialization: This is a compressed standalone output in XML format; it is
human-readable and allows you to have a manual implementation
Custom serialization: This is DIY and is used to build your own serialized
output

Each serializer has performance or security gains. There isn't a one-size-fits-all; just choose
the serializer that fits your purposes.

To learn more about generics (a fairly advanced topic), check out the
MSDN documentation at
http://msdn.microsoft.com/en-gb/library/512aeb7t.aspx.

https://docs.unity3d.com/Documentation/ScriptReference/PlayerPrefs.html
http://msdn.microsoft.com/en-gb/library/512aeb7t.aspx

Putting a Bow on It

[451]

Not all platforms support all serializers; also, some classes (such as
MemoryStream) are not available on all platforms. You will sometimes
have to tailor the approach you use to work with other platforms. If you
do, however, make sure you do it within the helper classes so that all the
platform-variant code is in one place and does not clutter up your game.

Serialization is important as it can be used anywhere you need to package data to be saved
or even transmitted over the wire for a cloud backup or even network play.

For more information about serialization, see the MSDN .NET reference guide at
http://msdn.microsoft.com/en-us/library/ms172360(v=vs.110).aspx.

Saving data to disk
Another way to manage the way your games save data is to serialize it to disk; there is a
method you will use to determine how fast and secure this is.

Instead of using PlayerPrefs, it is better to manage the saving and loading of your player
data to a disk (or the Web; see the following sections). Thankfully, MonoDevelop (the C#
engine behind Unity3D) provide common functions to access the disk across all the
platforms that Unity supports.

There are exceptions, however, due to platform limitations or
specializations in some platforms. In these cases, Unity provides special
classes to access platform components, for example, the
UnityEngine.Windows namespace.

You can also write disk access routines that are more platform-specific if you wish to make
them more performant, but this requires you to write an interface and your platform-
specific code for each routine.

Backing up to the Web
As an alternative to the basic way of saving data to a disk, a lot of games now (especially if
they are targeting multiple platforms) support a web backend to store a player's data. It
doesn't need to be heavy; just use a player name/ID key and store the serialized data.

The benefit of this approach is that the player can continue playing on any device,
regardless of which device they were last playing on.

Implementing this approach depends on the backend service you use for your data.

http://msdn.microsoft.com/en-us/library/ms172360(v=vs.110).aspx

Putting a Bow on It

[452]

The simplest approach is to use the serialization methods described previously and post
your data to a backend web service using the Unity WWW class. As a full example would be
too complex to demonstrate; what follows is just some code snippets of the available Unity
functions.

To back up on the Web, you will have to write your web service on a
server to accept this data, which is beyond the scope of this book, but if
you search on www.codeproject.com or stackoverflow.com, you will find
many good examples of such implementations.

For more information about the WWW class, see the Unity scripting reference guide at
https://docs.unity3d.com/Documentation/ScriptReference/WWW.html.

Going further
If you are of the adventurous sort, try expanding your project to add the following features:

Expand on the SplashScreen and StartScreen by adding more interesting art,
effects, and menus.
Either add property drawers or even a complete custom editor for the dialogs in
the conversation system covered in Chapter 6, NPCs and Interactions.
Extend the Enemy classes in Chapter 9, Getting Ready to Fight, to better configure
them in the editor.
Build your menus either in a single scene or multiple ones. Manage the transition
between each menu state/view.
Research the various saving techniques and implement save functionality in your
game.
Take one of your own game ideas and plan the flow of the game from end to end
using a Mindmap tool. Go beyond just the menu and sketch out the entire game.

https://cdp.packtpub.com/b05553masteringunity2dgamedevelopmentsecondedition/%5CUsers%5CAshley%5CDesktop%5CMastering%20Unity%202D%20Book%5Crtf%20files%5Cwww.codeproject.com
https://cdp.packtpub.com/b05553masteringunity2dgamedevelopmentsecondedition/%5CUsers%5CAshley%5CDesktop%5CMastering%20Unity%202D%20Book%5Crtf%20files%5Cstackoverflow.com
https://docs.unity3d.com/Documentation/ScriptReference/WWW.html

Putting a Bow on It

[453]

Summary
We started this chapter by looking into what is involved in finishing and packaging the
game itself with menus and important touch points if you want to stand out.

To make best use of the editor, we extended and expanded on the default views that the
Unity gives us.

Through the course of this chapter, we looked at all of the capabilities that Unity gives us to
make best use of these features. With these tools in hand, we can keep building our games a
lot easier and customize Unity to fit our game (rather than the other way around). The
editor is there to help us build our game, so why not improve it?

Several developers graciously share their editor scripts and work in open source libraries,
so be sure to look around; in many cases, you don't need to start from scratch.

We covered editor customization, property drawers, custom editors, editor windows, and
Gizmos. We also covered architecting the game package with screens and menus and
working with saving and loading data.

In the next chapter, we look at packaging the game on to several platforms, extending our
game out on to the platform itself, and providing platform-specific features in the game.

14
Deployment and Beyond

Building a game is one thing, and showing it to your friends and family is another.
However, eventually, you are going to want to ship and sell your game in one of the most
challenging markets: games!

Your title has to shine; it has to enable features that other titles don't have to stand out and
be noticed.

In this chapter, we will look at the various bonus features you can add to your game as well
as the differences in developing for different platforms.

The following topics will be covered in this chapter:

Handling platform differences
Building your asset projects (and making a fortune on the asset store)
Distributing to mobile
Social network integration
Monetization

Handling platform differences
Unity does a lot for developers to abstract us from the many platforms you can deploy to.
Most of the common functions, such as memory management, audio, controller inputs,
purchasing, and so on, are all implemented with a single generic interface with Unity3D.
This means you do not need to write separate code to play an audio file, or draw to the
screen for each and every device or platform that you want to support and deploy to. It
really is a big time-saver (ask anyone who has written their own engine just how much fun
they had doing everything multiple times for each platform).

Deployment and Beyond

[455]

Unity does a lot, but it doesn't do everything. For the following fringe areas, you will have
to do the leg work to get these features implemented:

Social integration (Facebook and others)
In-app purchasing
Alternate physics or networking implementations

The list goes on. In a lot of cases, there are already pre-made assets on the Unity store that
have done the hard work to build these implementations. A fair few, you will note, do not
support all platforms. In these cases, it will get you most of the way, but you will either
have to wait for them to support platform X or write it yourself.

In all cases, assets need to integrate tightly with the underlying platform. Some are simple
to perform, others not so much. Also, in some cases, you will have to work with the Unity
platform build system to push your changes onto the platform (though not absolutely
necessary, this will save you from having to repeat every build or if you want to create your
assets).

In general, the patterns you need to support are as follows:

Using different code paths with directives
Accessing native platforms from Unity
Calling platforms from Unity
Implementing reusable libraries that are natively compiled to work on all
platforms

Preprocessor directives
When you want the code to run in a particular way on one platform and in a different way
on another, you can use the pre-compiler directives to tell Unity to pick one section of code
over another (when it builds the project), or to simply ignore the sections of the code. This is
also true for the editor, which Unity considers a platform, just like any other. So, we can
have code to run and deploy in the editor, but restrict its execution when it's deployed to
another platform. You could use the special editor classes to do this, but you may also want
to do this with any other code.

A few of the preprocessor directives (or the platform defines) that Unity recognizes are
listed in the following table:

Deployment and Beyond

[456]

Statement Description

UNITY_EDITOR This code will run only in the editor, not on a platform

UNITY_EDITOR_WIN This code specifically targets the editor on Windows (if you
have the code that runs differently than on a Mac)

UNITY_EDITOR_OSX This code specifically targets the editor on Mac (if you have the
code that runs differently than on a PC)

UNITY_STANDALONE This code targets desktop platforms (Windows/Mac/Linux)

UNITY_STANDALONE_OSX This code targets Mac OS X only (this includes Universal, PPC,
and Intel architectures)

UNITY_STANDALONE_WIN This code targets Windows desktop only (excluding Windows
8)

UNITY_STANDALONE_LINUX This code targets Linux desktop clients only

UNITY_WEBGL This code targets WebGL

UNITY_IOS This code targets the iOS platform only

UNITY_ANDROID This code targets the Android platform only

UNITY_WP_8 This code targets the Windows Phone 8 platform only

UNITY_WP_8_1 This code targets the Windows Phone 8.1 app or Universal
projects on Windows Phone 8

UNITY_WII This code targets the Wii platform only

UNITY_PS3 This code targets the PlayStation 3 platform only

UNITY_PS4 This code targets the PlayStation 4 platform only

UNITY_XBOX360 This code targets the Xbox 360 platform only

UNITY_XBOXONE This code targets the Xbox One platform only

For a full list of platform directives, visit:
http://docs.unity3d.com/Manual/PlatformDependentCompilation.html

.

It's worth noting that you are not limited to just the Unity preprocessor
directives. You can use Visual Studio's directives or even create your own
by adding the following class to the top of your #define MyDirective
class (no semicolon). Then, you can block out sections of your code by
enabling or disabling this line. If a directive does not exist, it will always
be skipped.

http://docs.unity3d.com/Manual/PlatformDependentCompilation.html

Deployment and Beyond

[457]

To use these directives, we will simply declare them with an #if statement to surround the
code we want to target.

Pushing code from Unity
Unity provides several post-processing capabilities that allow you to both intercept and
override and also add your own processing to just about anything in the asset pipeline:
assets, scripts, and even the build process itself.

Processing assets
Post or pre-processing of assets is very useful if you have custom-made or complex assets
that need additional work once they are imported in Unity. In most cases, this is not needed
as Unity already does a lot of work for you by processing assets.

If you do create any asset-processing scripts, remember they need to be
placed in Assets\Editor.

We won't go into too much detail here as it is a very large area; this section is mainly to
highlight its existence for those who were not aware. It is well-worth reading and checking
up on.

For more information about asset processing, refer to the Unity scripting
reference guide at
https://docs.unity3d.com/Documentation/ScriptReference/AssetPost

processor.html.

For a nice, clean example of an asset processor, see the post on using Unity
to make a simple FBX model post processor at
http://forum.unity3d.com/threads/53179-Simple-AssetPostprocessor

-example.

https://docs.unity3d.com/Documentation/ScriptReference/AssetPostprocessor.html
https://docs.unity3d.com/Documentation/ScriptReference/AssetPostprocessor.html
http://forum.unity3d.com/threads/53179-Simple-AssetPostprocessor-example
http://forum.unity3d.com/threads/53179-Simple-AssetPostprocessor-example

Deployment and Beyond

[458]

Processing the build
A more interesting area for study, especially if you are working with many platforms and
find yourself doing repetitive tasks on each platform (or when you create your Unity assets
and need to copy files to a platform), is the ability to extend Unity3D's own project build
process.

Simply create a normal class script in Asset\Editor, and then create your build action
function with the [PostProcessBuild] attribute and the build function signature, as
follows:

using UnityEngine;
using UnityEditor;
using UnityEditor.Callbacks;

public class MyBuildPostprocessor
{
 [PostProcessBuild]
 public static void OnPostprocessBuild(BuildTarget target, string
pathToBuiltProject)
 { }
}

The attributes from the build processing give you the following information:

BuildTarget: This tells you which platform is currently being built using the
BuildTarget enumeration.
Path: This gives you the output path where the build project is being written.
This is useful if you want to copy additional files to it.

You can also control the order in which this function is processed by adding parameters to
the [PostProcessBuild] attribute as follows:

[PostProcessBuild(10)]
public static void OnPostprocessBuild(BuildTarget target,
 string pathToBuiltProject)
{ }

Deployment and Beyond

[459]

The order number is a definition of priority: the higher the number, the lower the priority.
By default, all scripts have a priority of 1. Scripts with lower numbers are executed first
(even negative numbers such as -10 are allowed for ultimate priority), whereas scripts with
higher numbers are executed last.

This is especially useful if you want to have several actions execute on a successful build
and want to control the order in which they are executed.

You can also copy code files directly to the target solution, if you wish,
from your Unity project. If you do not want those files to be read or
executed by Unity, then simply suffix them with .ignore, and Unity will
ignore them. Just remember to rename them when copying them to a
platform.

For example:

MyPlatformClassFile.cs.ignore

For more information about build processing, see the Unity scripting reference guide at
http://docs.unity3d.com/412/Documentation/ScriptReference/PostProcessBuildAttri

bute.html.

For a very full-featured example of highly customized build processing,
check out the AdRotator Unity plugin, which is open source, on GitHub
at:
https://github.com/Adrotator/AdrotatorV2/tree/master/AdRotatorUn
ityPackage

Just check in the
AdRotatorUnitySDK.Assets\Editor\AdRotatorPostBuild.cs

script.

http://docs.unity3d.com/412/Documentation/ScriptReference/PostProcessBuildAttribute.html
http://docs.unity3d.com/412/Documentation/ScriptReference/PostProcessBuildAttribute.html
https://github.com/Adrotator/AdrotatorV2/tree/master/AdRotatorUnityPackage
https://github.com/Adrotator/AdrotatorV2/tree/master/AdRotatorUnityPackage

Deployment and Beyond

[460]

Building your assets
What may seem daunting is actually one of the simplest tasks to perform in Unity because it
is just a two-click job.

If you recall in Chapter 2, Building your Project and Character, I said you will create a
package that contains all the default folders you can use for any project; so, let's do that.

First, create a new project (just because it's best to start from scratch) and then add in
whatever folders, assets, scripts, and other things that you need in your asset package. In
this case, just all the folders we will commonly use in any Unity project are shown here:

Deployment and Beyond

[461]

With that in place, just navigate to Assets | Export Package from the Unity editor menu,
and you will be presented with the following window:

Here, you can select all the assets currently in your project that you want bundled up in
your own reusable Unity asset package. Once you are happy with your selection, just click
on Export…. Then, Unity will simply ask where you want your package to be created:

Deployment and Beyond

[462]

There you have it! Once saved, you will simply have your new asset package, which you
can reuse on every project or even publish to the asset store and make millions (well
probably not if it's just a bunch of folders; you might need a bit more than that). This
package can be named as follows:

MyDefaultFolderStructure.unitypackage

Packaging gotchas
You have your game running fine in the editor, and you finally come to start testing it on a
platform. Life is good and surely you must be ready to deploy; sadly, this is just the point
where your next journey begins.

Actually, shipping your title brings to light a whole raft of new challenges. What follows is
a list of tips, tricks, and gotchas I've encountered while working with many different teams
and events as follows:

Just because it runs in the editor DOES NOT mean it will run on a platform:

I've come across too many teams that finish their game in the editor without
even trying to run it on at least one target platform. This can cause serious
rework later on as you may find that the code will simply not run on some
platforms.

Another issue that can sometimes rear its head is when you have written
code that depends on the editor but you have not placed it in the Editor
folder. When you run it in the editor, it will work fine, but on a platform it
will either crash or give you a spurious message (worse on some platforms
than others.)

The best advice is to build to a platform at regular intervals, and make sure
that it actually compiles and will deploy to a device.

Just because it works for one platform DOES NOT mean it will work for all:

Unity obviously supports many different platforms, and each has its own
peculiarities. If you mean to target multiple platforms, always check
periodically whether you can build and deploy to the various platforms. It
doesn't have to be too often, just find the right balance for you. See whether
you can automate it through the Unity command-line tools.

Deployment and Beyond

[463]

For maximum exposure, try to focus on the lowest common denominator:

It's always attractive to build to the highest resolution and target really high-
spec machines; however, this is going to really limit your target audience.

When working with mobile projects, it is better to test and target minimum
specifications or devices, and make it run acceptably on that device. Any
higher-spec device, and it will just fly.

If you are feeling adventurous, then build your game to turn on higher spec
features/assets when a high spec machine is detected. However, this will also
potentially increase the size of your final download, which may also put your
game out of budget for low-spec devices.

This is a hard challenge and requires a different approach for each game you
make, so think hard about it.

A last resort (which most developers shy away from) is to build two versions
(a PRO HD version and a Basic low-res version). There is no one right
answer, so just pick a path that fits your game, budget, and time.

Assets from the store can be your savior; they can also be your downfall:

Be aware of what assets you are downloading in the scope of your title; check
what platforms it supports and make sure it's maintained.

There have been quite a few horror stories about not being able to move to
platform X because the plugins won't even compile, and finding an
alternative is very difficult because of the particular plugin that is integrated
in a project.

It all comes down to balance-ask why you are using a certain asset, make
sure you understand why you are using it, and assess its long term fit before
committing yourself to it.

Beware of the platform requirements:

Certain platforms have very specific requirements when it comes to games
and/or apps. Some have limits on project sizes, others (such as Windows
Phone) have certain operating restrictions (Windows Phone has a hardware
Back button, which must always Go Back for example).

Others have restricted device capabilities or require enforced policies to be in
place before you can target certain markets.

Deployment and Beyond

[464]

In the end, it comes down to assessing your titles fit for a certain
device/market or operating system, and making plans before you go all-in to
adopt it. Make a plan, understand what you are getting into, and then move
forward.

Distributing to mobile
The three major mobile platforms are iOS, Android, and Windows Phone. Each platform
has its strengths and weaknesses in terms of performance, distribution, and marketing.

Before you begin publishing, make sure you have all UI elements scaling correctly at
various resolutions. Using a canvas with the anchor and pivot points properly placed helps
with this. Android has many more screen resolutions than any other mobile platform and it
is impossible for you to test on all resolutions, so making sure everything scales
appropriately is essential.

To publish on iOS, you final game must be built on a Mac. To publish on Windows Phone,
you final game must be built in Windows 10. To publish on Android, your final game can
be built using either a Mac or Windows operating system. So, to build to all three platforms
you need both a Windows 10 machine and a Mac with a current OS.

Each of the mobile platforms require you to sign up for their storefront; none of them allow
you to do so for free. Android development costs the least amount of money upfront, with
the total cost of a Google Play account only being $25 for a lifetime. Developing for iOS is
the most expensive. You have to pay $99 a year to get an Apple Developer account.
Microsoft is right in the middle in pricing. Its pricing varies by country, but it is around $20
per year for an individual account.

Social network integration
There is a lot you can do to add social network integration into your game. You can go as
simple as adding a Facebook like button or Twitter share button. Or you can get more
complicated and integrate Facebook friends lists to allow for multiplayer gameplay, for
players to give each other items, or for players to compete through leader boards. Even
something as simple as allowing players to share their high score is valuable.

Including incentives for using social networking options is a good way to raise awareness
for your game. Often, games will offer bonuses for pointing others to a game, or offer
additional bonuses for playing with others by way of social media.

Deployment and Beyond

[465]

Some games take it a step further. The 2015 game #IDARB actually allowed players to tweet
specific hashtags at games being publicly streamed online in order to make things happen
that both hindered and helped those playing. The 2011 mobile game, Superbrothers: Sword
& Sworcery EP allowed players to tweet out specific lines of dialog from the game without
clearly identifying the source of the text, which helped to build an air of mystery around the
game.

You can find many different assets on the Unity Asset Store to assist you in adding social
network integration into your game.

Monetization
One of the hardest decisions we have to make with our creations is how to get paid. It is
true that we love our creations and they are a part of us, but there should always be some
sort of reimbursement for our effort.

Some of the most common patterns for monetization in games are paid, paid with trial, ad-
supported, in-app purchase, and in-game currency.

Paid
Games are usually sold at a fixed price. For big game studios, this is generally the only
option, especially with disk-based delivery and some marketplaces.

The emphasis on a paid-only pattern means that you need a high-quality sales portfolio for
your game and outstanding game-marketing assets (logos, screenshots, videos, and so on).

What is also just as important is the blurb about your game. It really has to stand out and
draw the player in to make them part with their hard-earned cash.

Paid with trial
Offering a trial with your game is a great way to entice the players in. Obviously, it gives
them a taste of your game before they commit to paying for it.

Be honest about the trial though; there have been many cases of annoyed
players where games were published for free but were actually limited
trials. Do not upset your potential buyers; be upfront about it.

Deployment and Beyond

[466]

You still need a good presence with your marketing and storefront, but the trial is also
another great option to draw them in.

When going down the trial route, be sure to pick a single path and stick to it, either by
limiting the game, offering so many levels, or even having a time-limited play. Just don't
mix them!

Another factor in offering trials is that each platform you deploy to may have a different
way of providing it, either directly from the marketplace or through marketplace APIs. It's
best to design how your game will behave in a trial and link that to a flag or option. You can
then control the game separately from the menu or check the game on startup.

Ad supported
Often, the ad-supported option is the route for a lot of free-to-play mobile titles. This is one
option that can be difficult to get right. If there are too many ads, the player will just get
annoyed and uninstall it. Alternatively, if there are few ads, you are not going to get much
back from it.

A key thing to remember about ads is that it's all about presentation and numbers. You
need thousands of ads presented through your titles to make any kind of money back from
the ad providers. It will be better if the player also clicks on the ad, as this generates better
revenue; however, you cannot guarantee that the player will do this.

Warning

Do not attempt to fake or force the player to click on ads. It's a very bad
experience and will most likely force the player to uninstall your game
quickly. Also, ad providers are clever enough to work out whether you are
faking the clicks; if so, they'll simply not pay you.

I have seen cases where developers have layered ads on top of each other
to maximize their presentation or have use GUI controls in close proximity
to the ads, tricking the player to click on them. These are very bad
practices and should be avoided. At best, you won't get paid for your ads;
at worst, it will significantly get you bad reviews and lower your number
of players.

Deployment and Beyond

[467]

A few actions that generally work are as follows:

Displaying ads in a non-UI blocking portion of the screen in the gameplay
Displaying ads only in the menu or non-game screens (for example, the inventory
and the pause screen)
Displaying ads only in the loading screens
Pop-up ads that appear when an event occurs
Ads that players elect to play to receive an in-game currency or reward

You can mix-and-match the preceding patterns, but remember there is a fine line between
background annoyances that the player can just ignore if they don't want to look and
screens that are too intrusive and overbearing. Test with a selected audience and alter your
implementation based on their feedback before you publish it.

The terms used by the ad providers aren't meant to befuddle you, but they do take some
getting used to. Some of the terms and their meanings are described as follows:

Fill rate: This term is the percentage rate at which ads will be sent to your game.
If the provider has run out of ads or has none for your ad settings (age, region,
language, and so on), this can drop to zero, meaning no ads.
Impressions: This term denotes the number of successfully shown ads in your
game. Beware of the same ad shown several times; some ad providers count this
as the same impression. Just check against your own experience.
Click through rate (CTR): This term is the higher paid option with ads; it denotes
that the players are actually clicking on the ads to look into them.
eCPM: This term is basically a unit of measurement of how much you will be
paid per click or impression. Usually, you just need to multiply this figure by the
number of impressions to see how much you will get. Note that this figure will
go up and down based on just about anything, including the weather.
AdTypes: There are various ad types and sizes supported by each provider with
different capabilities. Banners are the simplest. They take up the entire screen
while displaying the ad. Others such as interspatial are interactive and generally
take up the entire screen. Check each provider to know what they support and
which you want to use.

Another factor to keep in mind is publishers. They will all perform differently in different
markets and languages. Generally, ad publishers focus on a few selected markets or only
take advertisements in certain languages, and so on.

Deployment and Beyond

[468]

Some of the publishers are as follows:

Unity Ads: Unity Ads is great for beginners as it is easy to implement, but it only
works on a few platforms
Smaato: This publisher is strong in central Europe and the US but poor in non-
English countries
Inneractive: This publisher provides a good mix of support and ads across the
globe but suffers from low or poor fill rates in practice (something they are
working on)
Google AdMob: This publisher is strong across the globe, but you need millions
of impressions to make any real money

There are many more publishers out there that have their strengths and weaknesses. You
will be able to determine which publisher works best for you in which countries by
personally testing them.

When using advertising, it is very important to add your own
instrumentation to your title to track how the adverts are doing. Don't just
use the ad publisher's figures from their respective dashboards. This way,
you can work out with what works best for you and alter your plans
accordingly. Don't just publish and let go; manage effectively to improve
your returns.

While implementing ads, there is no rule that says you have to use only one provider.
Always hedge your bets with ad providers and implement as many as you are comfortable
with; structure your ad presentation in a framework so that you always show the best-
performing adverts first; and use another ad network if the current one isn't delivering.

If this seems a bit much to do by yourself, there are several frameworks out there that will
do this for you. Ad-rotating solutions are fully featured to work with a number of ad
providers and ensure that you always display ads.

In-app purchases
A common feature implemented in most games these days is in-app purchases. This feature
is simply your paid shop front within the game to unlock levels, purchase rare items, or
remove unwanted features such as ads.

Deployment and Beyond

[469]

In some cases, in-app purchases have been used to implement trial functionality: publishing
the title as free and then offering an in-game unlock option.

Note that, with the trial system, be upfront if your game is sold as a trial.
Players do not like this and will aggressively mark down and slam titles
that appear free until they are forced to pay to play!

In-app purchases on most platforms come in the following two forms:

Durable/nonconsumable: These are in-game items that the player can purchase
(such as a sword, an unlockable area, or even the ability to turn off advertising if
your game is ad-supported). These are generally single-use items, and you can
verify with the marketplace of the platform to check whether the player has
purchased them or not. It is advised that you also manage the information locally
to ensure that you don't slow the game down on startup while checking. You can
also keep this information on a backend service, just in case the user resets their
device or transfers to a new one; this is not mandatory however.

These can only be purchased once.

Consumable: Effectively, consumables are in-game currency, items that are
meant to be recharged and replenished over time.

The big difference between consumables and durables is that consumables
are not tracked on the server (other than in the payment history, but the
payment history is not available in apps/games).

These can be purchased many times over.

Besides the store/marketplace for each platform, there are some online services that will
create payment systems for you, saving you from recreating everything for each platform
you support. You still, however, have to publish your app to each platforms' store.

Warning

If you are using in-app purchases, beware that Big Brother is watching.
Employing unethical or illegal practices when implementing these systems
could bring you a whole heap of trouble.

Deployment and Beyond

[470]

In-game currency
Virtual currency, as a practice in games, has been rising steadily. The basic premise is that
the game is generally free to play and uses some kind of in-game currency, which the
players can earn in the game. This currency usually takes two forms; the basic coin, which
can be earned in-game, and the premium coin, which can only be bought with cash (or as a
result of completing rare and special events).

The idea is simple; play through the game slowly and normally. However, if you want to
advance quicker or get ultra-rare items, you need to buy and spend the premium coin for
those items. In some cases, you can also convert the premium coin to the basic coin to get
the in-game currency quicker.

Although this makes a steady profit in single-player or offline games, it really comes into its
own with the multiplayer option online. It seems there is a growing market for people to
advance quicker than others or just to beat their friends quicker.

Implementing coin systems is generally harder than just implementing in-app purchases
but makes for an easier-to-manage ecosystem.

Also, see the warning about in-app purchases, as this applies heavily to in-game
currency/bitcoin systems as well, if not more.

Going further
If you are the adventurous sort, try expanding your project to add the following features:

Make your dream a reality and ship a game
Market your game through social media, a blog, and other venues
Implement social media in your title

Deployment and Beyond

[471]

Summary
Rounding out our last chapter, we have been through an interesting ride to finally complete
and get your project out there. We covered extending your Unity project onto the platform,
plugins and their extensions, building your very own reusable assets, social media
integration, and monetization.

Something you can try when you engage with a platform is to look at engaging across
platforms, building titles that work cooperatively, enabling either a true multi-platform,
multiplayer experience, or even building cooperative apps/games (where the phone version
of a game can act as a second screen for your tablet/console version), as this is where
dreams truly come alive!

Index

2
2D Object-Sprite 13

A
ad-rotating solutions 468
AdTypes 467
advanced programming techniques
 about 161
 manager approach 161
 singleton approach 161
Android
 game, publishing on 464
Animation Clips
 about 66, 67
 Animation Dope Sheet 69
Animation Controllers 66
Animation Dope Sheet
 about 69
 animation drop-down selection 69
 animation properties 70
 curve view 71
 sample rate (frames per second) 70
 time/recording controls 69
 timeline 70
AnimationCurves 259
Animator components 66
approaches, for running scripts in Editor folder
 [InitialiseOnLoad] attribute 445
 Editor application callbacks 446
 mixing 447
Artificial Intelligence (AI)
 about 254
 reference link 255
asset processing
 reference link 457
Asset Store

 reference link 426
assets
 art 10
 audio 10
 building 460, 461
 gathering 10
 gathering, reference links 10
 general 10
attack
 representing, with particle effects 345
 selecting 334, 336
 selecting, by adding visual effect 336, 338
audacity
 reference link 400
audio
 listeners 402
 muting 410, 411, 413
 sources 401, 402
 unmuting 410, 411, 413

B
background music, adding
 about 402
 audio source, adding 403
 music, retaining after scene transition 406
 splash screen, creating 402
 transitioning, to next scene 404
background tasks
 about 179
 IEnumerator 181
 yield operator 182
battle scene
 building 261
 Dragon enemy, spawning 268, 269, 270, 271,

273

 first enemy, adding 263, 265, 266, 267, 268
 map position, saving 283, 284, 285

[473]

 migrating, back to town 287
 player, allowing to run 277, 279
 re-entry, stopping 287
 setting up 261
 starting 279, 280, 281, 283
battle state manager
 about 293
 introductory animation 300, 301, 303, 304, 305,

306, 307, 308
 obtaining, in code 296, 297, 298
 setting up 292
 starting 299, 300
battle system
 balancing 327
 designing 326
 finishing 358
 leveling up 327
behaviors
 about 58
 for common game object 59
Bit Shift song 402
bounds 128
Box2D 128
build processing
 reference links 459

C
C# Programming Yellow Book
 reference link 204
C#
 reference link 204
camera, town
 aspect ratio, setting 126
 moving, with player 124
 parameters, setting 126
 platform-resolution 125
 update, comparing with FixedUpdate 124
 update, comparing with LateUpdate 124
 working with 121, 122
canvas render modes
 about 142
 Screen Space - Camera mode 144
 Screen Space - Overlay rendering mode 143
 World Space rendering mode 145
Cartographers' Guild

 reference link 228
character navigation, between scenes
 building settings, updating 246
 NavigationManager script, creating 241, 243,

244

 paths, blocking off 244, 245
 scenes, changing 247
classes
 about 51
 game structure 56
 MonoDevelop 52, 53, 54
 object-orientated (OOP) 54
 player object 57
Click through rate (CTR) 467
communications, between GameObjects
 about 166
 delegates 166
 dependency, breaking 175, 176, 178
 events 171, 172
 messaging 174
component
 accessing 61
 coding with 60
 hero, controlling 62, 63, 64
 referencing 61
conversation system, NPC
 adding, to game 192, 193
 building 209
 conversation, starting 210
 displaying 219, 220
 manager 209
 UI, preparing 211, 212, 214, 215, 217, 218
coroutines
 about 179
 gap, closing 183
 reference link 180
 starting 182
 using 180
Creative Commons
 reference link 10
custom editors
 reference link 436

[474]

D
delegates
 about 166
 compound delegates 170
 configurable method pattern 167
 delegation pattern 168
Dependency Injection
 about 165
 reference link 165
design patterns, inventory layout
 encumbrance systems 363, 364
 mini game 365
 real world 366
 Rule of 99' 363
 slot-based systems 364
Dragon enemy
 BattleManager, creating 274, 275, 276
 spawning 268, 269, 270, 271, 272
Dragon sprite sheets
 reference link 264
DriveThruRPG
 reference link 160

E
eCPM 467
editor menus
 building 440
 contextual MenuItems, adding 443
 MenuItem attribute 443
 MenuItem attribute, adding 441
 MenuItem attribute, disabling 441
 MenuItem attribute, enabling 441
 shortcut keys, adding toMenuItem attribute 442
editor windows
 reference link 438
editor
 custom editors 433, 435
 editor window 436, 437
 extending 426
 Gizmos 438, 439, 440
 property drawers 427
 scripts, running 445
EditorGUI class
 reference link 428

EditorGUILayout
 reference link 438
enemy AI
 beefing up 329
 Dragon prefab, updating 332
 enemy profile/controller 329
 profile, setting up in code 333
enemy sprite sheets
 reference link 264
event systems
 fixed system 250
 random generation 251
Expression Design
 reference link 419

F
Fallout 364
fantasy maps
 reference link 228
fantasy world generator
 reference link 229
fill rate 467
Final Fantasy 363
Finite State Machines 255
First Person Shooter (FPS) 359
FreeMind
 reference link 419

G
game's map
 creating 231
 places of interest, adding 235, 237, 238, 239,

240

 player prefab, adding to overworld 233, 234
 world map, adding 231, 232
game
 creating 32
GameObjects
 about 47
 communicating between 166
 components 47
 Sprite GameObjects 48
generated maps
 about 229
 in-game generated maps 229

[475]

generators
 reference link 418
Generic Items set
 reference link 367
generics
 reference link 166, 450
GIMP
 reference link 232
Gimzo-driven design
 reference link 440
Gizmos
 reference link 440
GUI
 adding 312
 correct buttons, displaying 321, 324
 HUD, laying out 312, 314, 315, 316, 317, 318,

319

H
handles
 reference link 436
Head-Up-Display (HUD) 146, 292
Hexagon Pack
 reference link 231
home town
 background 105, 108
HUD, laying out
 correct buttons, displaying 320

I
impressions 467
in-app purchases
 consumable 469
 durable/nonconsumabl 469
in-game menu structures
 building 415
 flow 419
 screens 416
Integrated Development Environment (IDE) 52
inventory
 creating 366
 items, creating 378, 379
 laying out 363
 managing 392, 393, 394, 395
 objects, adding to 396, 397

 player inventory definition, updating 384
Inversion of Control (IoC) pattern
 reference link 165
iOS
 game, publishing on 464
item
 importance 360
 properties 360

K
Keep it simple, stupid (KISS) 202

L
loading scene
 reference link 416

M
main character
 animating 73
 animation states, connecting 86, 88, 89, 92
 animation transitions, planning 85
 animation, stopping 96, 97, 98, 99
 Animator, setting up 79
 controllers, accessing from script 93
 default state, setting up 79, 81, 82, 83
 first Animation Clip 76
 first Animation Clip, adding 74, 78
 other Animation Clips, adding 83
manager approach
 about 161
 empty GameObjects 162
map
 fixed map 228
 generated map 228, 229
 larger view 227
 Procedural Content Generation Wiki 230
Mecanim 259
mobile platforms 464
modifications, to Unity 5
 about 19
 animator changes 21
 audio mixing 22
 component access 20
 licensing 19
monetization pattern

[476]

 about 465
 ad supported 466, 467
 in-app purchases 468, 469
 in-game currency 470
 paid 465
 paid with trial 466
MonoDevelop 52, 342, 451
MSDN C# page
 reference link 242
music
 obtaining, resources 400
 reference link 400
 resources 400
 selecting 399

N
NPC
 adding, to game 191, 193
 conversation system, building 201, 209
 conversion component 209
 conversion object 202
 dots, connecting 221, 222, 223, 224
 object, saving 203, 206, 208
 object, serializing 203, 206, 208
 player, navigating 195, 196
 player, stopping from walking through 198, 199,

200

O
opengameart
 reference link 10
Orthographic projection 11

P
packaging gotchas 462, 463
particle effects
 materials, creating 345
 particles, adding 346, 348, 349, 351, 353, 354
 particles, displaying upon attack 356, 357
 used, for attack representation 345
Phantasy Star 402
platform differences
 handling 454
 preprocessor directives 455
preprocessor directives

 reference link 456
 UNITY_ANDROID 456
 UNITY_EDITOR 455, 456
 UNITY_EDITOR_OSX 456
 UNITY_EDITOR_WIN 456
 UNITY_IOS 456
 UNITY_PS3 456
 UNITY_PS4 456
 UNITY_STANDALONE 456
 UNITY_STANDALONE_LINUX 456
 UNITY_STANDALONE_OSX 456
 UNITY_STANDALONE_WIN 456
 UNITY_WEBGL 456
 UNITY_WII 456
 UNITY_WP_8 456
 UNITY_WP_8_1 456
 UNITY_XBOX360 456
 UNITY_XBOXONE 456
Procedural Content Generation Wiki
 reference link 230
project
 asset naming 27
 creating 29, 30, 31, 32
 overview 24
 structure 24, 25
Proof of Concept (POC) 24
property drawers
 built-property drawers 428
 custom property drawers 429, 430, 431, 432
 examples 428
 reference link 428
pseudo-random 251
publishers
 Google AdMob 468
 inneractive 468
 Smaato 468
 Unity Ads 468

R
randomness
 exploring 251
 random code/generation, planning for 252, 253
 reference link 252
 true randomness 252
Rect Transform 150

[477]

Resident Evil 4 375
Role-Playing Game (RPG) 7, 159
RPG UI overlays
 about 308
 adventurer's overlay 309
 context-sensitive overlay 310
 floating UIapproach 311

S
scene, adding
 scene sorting layers 117
 scene sorting layers, updating 115
 size, expanding 118, 120
 sprites sorting order 114, 115
scene, building
 about 112
 own background, adding 113
 sprite sorting layers 113
scene
 creating 32, 33, 34
screens
 about 416
 About screen 417
 additional menu 419
 loading screens 416
 main menu 416
 pause screens 418
 privacy policy 418
 settings pages 417
 slots/level selections, saving 417
 social integration 419
 splash screens 416
scripting
 about 184
 asset data, managing 184, 185, 187, 188, 189
 asset data, saving 184, 185, 187, 188, 189
scripts, running in Editor folder
 about 445
 approaches 445
Sega Master System 402
sensors 261
serialization
 .asset files, accessing in code 190
 about 184
 reference link 184, 451

 serialized files, using in editor 189, 190
serializer
 Binary serialization 450
 custom serialization 450
 JSON serialization 450
 XML serialization 450
settings
 data, saving to disk 451
 data, serializing 450
 PlayerPrefs, using 449
 Web, backing up 451
 working with 449
shop
 assets, gathering 366, 367, 368
 building 361
 buttons, linking up 386
 Buy Button, turning off 388
 creating 366
 entering 389, 390
 leaving 391
 managing 381, 383, 384
 scene, building 368, 369, 370, 371, 372, 373,

374, 375, 376, 377, 378
 stocking 385, 386
shopping
 need for 359
single enemy
 preparing, to attack 328
singleton approach
 about 161
 C# singleton pattern 163, 164
 reference link 165
Singleton class
 reference link 210
skyrim 364
social network integration
 adding, to game 464
sound effects
 adding 406
 adding, for buying button 408
sound
 obtaining, resources 400
 reference link 400
 resources 400
 selecting 399

[478]

splash screen
 finishing 420, 421
sprite animation
 about 66
 Animation Clips 67
 Animation Controllers 71
 Animator component 72
Sprite Editor
 about 13, 39
 region manipulation 43
 sprite slicer 40
 view controls 42
Sprite Renderer 13
sprite slicer
 about 40
 automatic 40
 Grid By Cell Count (Manual) 41
 Grid By Cell Size 41
sprite system 35
sprites
 about 26
 default settings 38
 filter mode 38
 hero, introducing 49
 importing 35
 main character, importing 44, 45, 46
 mip maps, generating 38
 multiple mode 37
 Packing Tag 37
 per-platform overrides 38
 Physics 2d 18
 pivot 38
 pixels per units 37
 polygon mode 37
 single mode 37
 Sprite (2D and UI) 36
 Sprite Editor 14
 Sprite Renderer 14
 sprite sheets 15
 Texture Atlases 17
 working with 13
star
 reference link 440
start screen
 building 422, 423, 424, 425

State Machine Transitions 72
state machines
 multiple cases, planning for 258
 singular choice 257
 state managers 259, 260
 states, defining 256, 257
 uses 255
StrangeIOC
 reference link 165
Superbrothers
 Sword & Sworcery EP 465

T
tags
 adding, to border 136
target
 selecting 339
 selection circle prefab 340
 selection logic, adding to EnemyController class

341, 343
town, returning to
 about 248
 NavigationManager script, creating 249
 NavigationManager script, updating 248
town
 assets 101
 background 102, 104, 106
 building, with borders 128, 130, 133, 134
 buildings, adding 108
 character, allowing for leaving 240
 extra assets, adding to scene 110
 images, slicing 102
 roads, adding 108
 tag, adding to borders 135
transitioning 128
Transitions 87
True Random Number Generators (TRNGs) 252

U
UI Buttons
 about 153
 On Click event 155
 On Click() event 157
 Text child 154
 transition types 154

UI Canvas
 about 139
 EventSystem 141
 multiple canvases, using 146
 render modes 142
UI Image 146, 148, 149
UI Layout
 about 149
 Anchors property 151
 Pivot 151
 Rect tool, using 150
UI Text 147
Unity 4.6 138
Unity 5.3
 reference link 19
Unity 5
 about 7
 reference link 19
Unity Asset Store
 about 465
 reference link 67, 401
Unity Personal 19
Unity reference guide
 reference link 450
Unity scripting
 reference link 444
Unity User Interface (UI) System 138
Unity Wiki 209

Unity's 2D features
 about 11
 sprites, working with 13
 versus 3D Mode 11
Unity
 assets, processing 457
 build, processing 458
 code, publishing from 457
 reference link 12, 427
uTiled project
 reference link 229

V
view controls
 Alpha/Color 42
 Apply 42
 Pixelation Slider 42
 Revert 42
 Zoom Slider 42

W
WaitForEndOfFrame
 reference link 180
Windows Phone
 game, publishing on 464
WWW class
 reference link 452

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Overview
	Getting assets
	Unity's 2D features
	2D mode versus 3D mode
	Working with sprites
	Sprite Renderer
	Sprite Editor
	Sprite sheets
	Texture atlases
	Physics 2D

	Changes to Unity 5
	Licensing
	Component access
	Animator changes
	Audio mixing

	Summary

	Chapter 2: Building Your Project and Character
	Project overview and structure
	Project overview
	Structure
	Asset naming

	Creating the project
	Creating a scene
	Sprite system
	Importing sprites
	Texture Type – Sprite (2D and UI)
	Sprite Mode – Single/Multiple/Polygon
	Packing Tag
	Pixels Per Units
	Pivot
	Generate Mip Maps
	Filter Mode
	Default settings and per-platform overrides

	Sprite Editor
	Sprite slicer
	Automatic
	Grid By Cell Size and Grid By Cell Count (Manual)

	View controls
	Sprite region manipulation

	Importing our main character

	GameObjects and components
	Sprite GameObjects
	Bringing our hero into the scene

	Classes
	MonoDevelop
	The object-orientated design
	The game structure
	The common game object
	The player object

	Planning behaviors
	Behaviors for the common game object

	Coding with components
	Accessing components
	Referencing a component
	Controlling the hero

	Going further
	Summary

	Chapter 3: Getting Animated
	Fundamentals of sprite animation
	Animation clips
	Animation Dope Sheet
	The time/recording controls (1)
	Animation drop-down selection (2)
	The sample rate (frames per second) (3)
	Animation properties (4)
	Timeline (5)
	Curve view (6)

	The Animation Controllers
	The Animator component

	Animating the main character
	Adding your first Animation Clip
	Setting up the Animator and default state
	Adding the other Animation Clips
	Planning the animation transitions
	Connecting the animation states
	Accessing controllers from a script
	Making her stop animating and face the correct direction

	Going further
	Summary

	Chapter 4: The Town View
	Backgrounds and layers
	To slice or not to slice
	The town background
	The town buildings and roads
	The extra scenery

	Building the scene
	Adding the town background
	Sprite sorting layers
	Sprite Sorting Order
	Updating the scene sorting layers
	Building out the scene

	Working with the camera
	Comparing Update, FixedUpdate, and LateUpdate
	Moving our camera with the player
	The perils of resolution
	Setting our aspect ratio and camera parameters

	Transitioning and bounds
	Towns with borders
	Journeying onward

	Going further
	Summary

	Chapter 5: Working with Unitys UI System
	UI Canvas
	EventSystem
	Canvas Render Mode
	Screen Space – Overlay
	Screen Space – Camera
	World Space

	Using multiple Canvases

	UI Text and Images
	UI Text
	UI Image

	UI Layout and Rect Transform
	Rect Tool
	Pivot
	Anchors

	UI Buttons
	Transition types
	Text child
	On Click ()

	Going further
	Summary

	Chapter 6: NPCs and Interactions
	Considering an RPG
	Advanced programming techniques
	Singletons and managers
	The manager approach – using empty GameObjects
	The singleton approach – using the C# singleton pattern

	Communicating between GameObjects
	Delegates
	The configurable method pattern
	The delegation pattern
	Compound delegates

	Events
	Messaging
	A better way

	Background tasks and coroutines
	Enter coroutines
	IEnumerator
	Yielding
	Starting coroutines
	Closing the gap

	Serialization and scripting
	Saving and managing asset data
	Using the serialized files in the editor
	Accessing the .asset files in the code

	Adding NPCs and a conversation system to our game
	Let the player walk around the NPC
	Stopping the player from walking through the NPC
	Getting the NPCs talking
	The conversation object
	Saving and serializing the object for later
	The conversation component

	Building a basic conversation system
	The manager
	Starting a conversation
	Preparing the UI
	Displaying the conversation

	Connecting the dots

	Going further
	Summary

	Chapter 7: The World Map
	The larger view
	Types of map
	Fixed maps
	Generated maps
	In-game generated maps

	Going procedural

	Creating our game's map
	Adding the world map
	Adding a player prefab to the overworld
	Adding places of interest

	Leaving town
	Creating a NavigationManager script
	Blocking off paths
	Updating build settings to include new scenes
	Changing scenes

	Returning to town
	Updating the NavigationManager script

	Going further
	Summary

	Chapter 8: Encountering Enemies and Running Away
	Event systems
	Exploring randomness
	True randomness
	Planning for random code/generation

	Basic Artificial Intelligence
	State machines
	Defining states
	Simple singular choice
	Planning for multiple cases
	State managers

	Sensors
	Setting up your battle scene
	Building the new scene
	Adding the first enemy
	Spawning the Dragons
	Creating the BattleManager

	Allowing the player to run away
	Starting the battle
	Saving the map position
	Stop immediately re-entering battle
	Going back to town

	Going further
	Summary

	Chapter 9: Getting Ready to Fight
	Setting up our battle state manager
	The battle state manager
	Getting to the state manager in the code
	Starting the battle
	Introductory animation

	Efficient RPG UI overlays
	The adventurer's overlay
	A context-sensitive overlay
	Modern floating UI approach
	Balancing the need

	Bring on the GUI
	Laying out the HUD
	Displaying the correct buttons

	Going further
	Summary

	Chapter 10: The Battle Begins
	Designing an interesting battle system
	Leveling up
	Balancing

	Preparing to attack a single enemy
	Beefing up the enemy AI
	The enemy profile/controller
	Updating the Dragon prefab
	Setting up the enemy profile in the code

	Selecting an attack
	Adding a visual effect to attack selection

	Selecting a target
	The selection circle prefab
	Adding selection logic to the EnemyController class

	Attack! Attack!
	Using particle effects to represent an attack
	Creating the materials for the particle effects
	Adding the particles
	Displaying the particles upon attack

	Finishing up the battle
	Going further
	Summary

	Chapter 11: Shopping for Items
	Why do we shop?
	The power of an item
	Building your shop
	Laying out your inventory
	Rule of 99'
	Encumbrance systems
	Slot-based systems
	A mini game
	Real world

	Creating a shop and inventory
	Gathering shop assets
	Building the shop scene
	Creating inventory items
	Managing the shop
	Updating the player inventory definition
	Stocking the shop
	Linking up the buttons
	Turning off the Buy Button
	Entering the shop
	Leaving the shop
	Managing your inventory
	Adding objects to the player's inventory

	Going further
	Summary

	Chapter 12: Sound and Music
	Choosing the appropriate sound and music
	Where to get sound and music for your game
	Free resources

	Audio listeners and audio sources
	Adding background music
	Creating a splash screen
	Adding the audio source
	Transitioning to the next scene
	Keeping the music after the scene transition

	Adding sound effects
	Adding a sound to the buy button

	Muting/unmuting audio
	Going further
	Summary

	Chapter 13: Putting a Bow on It
	Building in-game menu structures
	The screens
	Splash screens
	Loading screens
	The main menu
	Save slots/level selections
	Settings pages
	The About screen
	Privacy policy
	Pause screens
	Additional menus (purchasing, achievements, leaderboards, and so on)
	Social

	The flow

	Finishing our splash screen
	Building our start screen
	Extending the editor
	The property drawers
	Examples property drawers
	Built-in property drawers
	Custom property drawers

	Custom editors
	The editor window
	Gizmos
	Building your editor menus
	Adding a MenuItem attribute
	Enabling/disabling a MenuItem attribute
	Adding shortcut keys to a MenuItem attribute
	Adding contextual MenuItems

	Running scripts in the Editor folder
	Alternative approaches
	The [InitialiseOnLoad] attribute
	Editor application callbacks
	Mixing it up

	Working with settings
	Using PlayerPrefs
	Serializing your data
	Saving data to disk
	Backing up to the Web

	Going further
	Summary

	Chapter 14: Deployment and Beyond
	Handling platform differences
	Preprocessor directives

	Pushing code from Unity
	Processing assets
	Processing the build

	Building your assets
	Packaging gotchas
	Distributing to mobile
	Social network integration
	Monetization
	Paid
	Paid with trial
	Ad supported
	In-app purchases
	In-game currency

	Going further
	Summary

	Index

